Hollunder & Li et al. (Opto-DBS 2022)
Segregating the Prefrontal Cortex by Means of DBS
Affiliations
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
- Movement Disorders and Neuromodulation Centre, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- Université Grenoble Alpes, Grenoble, France
- Inserm, U1216, Grenoble Institut des Neurosciences, Grenoble, France
- Psychiatry Department, CHU Grenoble Alpes, Grenoble, France
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- National Hospital for Neurology and Neurosurgery, UCL Queen Square Institute of Neurology, London, UK
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna, Pisa, Italy
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Rujin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
- Department of Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- NeuroCure Cluster of Excellence, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Parkinson and Movement Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Center for Brain Circuit Therapeutics, Brigham & Women’s Hospital, Boston, MA, USA
References
Benarroch, E. E. (2008). Subthalamic nucleus and its connections: Anatomic substrate for the network effects of deep brain stimulation. Neurology, 70(21), 1991–1996. https://doi.org/10.1212/01.wnl.0000313022.39329.65
Bonelli, R. M., & Cummings, J. L. (2007). Frontal-subcortical circuitry and behavior. Dialogues in Clinical Neuroscience, 9(2), 141–151. https://doi.org/10.31887/dcns.2007.9.2/rbonelli
Ganos, C., Al-Fatly, B., Fischer, J.-F., Baldermann, J. C., Hennen, C., Visser-Vandewalle, V., … & Horn, A. (2022). A neural network for tics: insights from causal brain lesions and deep brain stimulation, Brain, awac009. https://doi.org/10.1093/brain/awac009
Haber, S. N., Liu, H., Seidlitz, J., & Bullmore, E. (2021). Prefrontal connectomics: From anatomy to human imaging. Neuropsychopharmacology. https://doi.org/10.1038/s41386-021-01156-6
Haynes, W. I. A., & Haber, S. N. (2013). The organization of prefrontal-subthalamic inputs in primates provides an anatomical substrate for both functional specificity and integration: Implications for basal ganglia models and deep brain stimulation. Journal of Neuroscience, 33(11), 4804–4814. https://doi.org/10.1523/JNEUROSCI.4674-12.2013
Horn, A., Li, N., Dembek, T. A., Kappel, A., Boulay, C., Ewert, S., Tietze, A., Husch, A., Perera, T., Neumann, W. J., Reisert, M., Si, H., Oostenveld, R., Rorden, C., Yeh, F. C., Fang, Q., Herrington, T. M., Vorwerk, J., & Kühn, A. A. (2019). Lead-DBS v2: Towards a comprehensive pipeline for deep brain stimulation imaging. NeuroImage, 184(July 2018), 293–316. https://doi.org/10.1016/j.neuroimage.2018.08.068
Horn, A., Reich, M., Vorwerk, J., Li, N., Wenzel, G., Fang, Q., Schmitz-Hübsch, T., Nickl, R., Kupsch, A., Volkmann, J., Kühn, A. A., & Fox, M. D. (2017). Connectivity predicts deep brain stimulation outcome in Parkinson disease. Annals of Neurology, 82(1), 67–78. https://doi.org/10.1002/ana.24974
Li, N., Baldermann, J. C., Kibleur, A., Treu, S., Akram, H., Elias, G. J. B., Boutet, A., Lozano, A. M., Al-Fatly, B., Strange, B., Barcia, J. A., Zrinzo, L., Joyce, E., Chabardes, S., Visser-Vandewalle, V., Polosan, M., Kuhn, J., Kühn, A. A., & Horn, A. (2020). A unified connectomic target for deep brain stimulation in obsessive-compulsive disorder. Nature Communications, 11, 3364. https://doi.org/10.1038/s41467-020-16734-3
Li, N., Hollunder, B., Baldermann, J. C., Kibleur, A., Treu, S., Akram, H., Al-Fatly, B., Strange, B. A., Barcia, J. A., Zrinzo, L., Joyce, E. M., Chabardes, S., Visser-Vandewalle, V., Polosan, M., Kuhn, J., Kühn, A. A., & Horn, A. (2021). A unified functional network target for deep brain stimulation in obsessive-compulsive disorder. Biological Psychiatry, 90(10), 701–713. https://doi.org/10.1016/j.biopsych.2021.04.006
Wang, F., Dong, Z., Tian, Q., Liao, C., Fan, Q., Hoge, W. S., Keil, B., Polimeni, J. R., Wald, L. L., Huang, S. Y., & Setsompop, K. (2021). In vivo human whole-brain Connectom diffusion MRI dataset at 760 µm isotropic resolution. Scientific Data, 8, 122. https://doi.org/10.1038/s41597-021-00904-z
Hollunder & Li et al. (OHBM 2022)
Segregating the prefrontal cortex by means of DBS
Affiliations
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
- Movement Disorders and Neuromodulation Centre, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- Université Grenoble Alpes, Grenoble, France
- Inserm, U1216, Grenoble Institut des Neurosciences, Grenoble, France
- Psychiatry Department, CHU Grenoble Alpes, Grenoble, France
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- National Hospital for Neurology and Neurosurgery, UCL Queen Square Institute of Neurology, London, UK
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna, Pisa, Italy
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Rujin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
- Department of Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- NeuroCure Cluster of Excellence, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Parkinson and Movement Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Center for Brain Circuit Therapeutics, Brigham & Women’s Hospital, Boston, MA, USA
References
Benarroch, E. E. (2008). Subthalamic nucleus and its connections: Anatomic substrate for the network effects of deep brain stimulation. Neurology, 70(21), 1991–1996. https://doi.org/10.1212/01.wnl.0000313022.39329.65
Bonelli, R. M., & Cummings, J. L. (2007). Frontal-subcortical circuitry and behavior. Dialogues in Clinical Neuroscience, 9(2), 141–151. https://doi.org/10.31887/dcns.2007.9.2/rbonelli
Ganos, C., Al-Fatly, B., Fischer, J.-F., Baldermann, J. C., Hennen, C., Visser-Vandewalle, V., … & Horn, A. (2022). A neural network for tics: insights from causal brain lesions and deep brain stimulation, Brain, awac009. https://doi.org/10.1093/brain/awac009
Haber, S. N., Liu, H., Seidlitz, J., & Bullmore, E. (2021). Prefrontal connectomics: From anatomy to human imaging. Neuropsychopharmacology. https://doi.org/10.1038/s41386-021-01156-6
Haynes, W. I. A., & Haber, S. N. (2013). The organization of prefrontal-subthalamic inputs in primates provides an anatomical substrate for both functional specificity and integration: Implications for basal ganglia models and deep brain stimulation. Journal of Neuroscience, 33(11), 4804–4814. https://doi.org/10.1523/JNEUROSCI.4674-12.2013
Horn, A., Li, N., Dembek, T. A., Kappel, A., Boulay, C., Ewert, S., Tietze, A., Husch, A., Perera, T., Neumann, W. J., Reisert, M., Si, H., Oostenveld, R., Rorden, C., Yeh, F. C., Fang, Q., Herrington, T. M., Vorwerk, J., & Kühn, A. A. (2019). Lead-DBS v2: Towards a comprehensive pipeline for deep brain stimulation imaging. NeuroImage, 184(July 2018), 293–316. https://doi.org/10.1016/j.neuroimage.2018.08.068
Horn, A., Reich, M., Vorwerk, J., Li, N., Wenzel, G., Fang, Q., Schmitz-Hübsch, T., Nickl, R., Kupsch, A., Volkmann, J., Kühn, A. A., & Fox, M. D. (2017). Connectivity predicts deep brain stimulation outcome in Parkinson disease. Annals of Neurology, 82(1), 67–78. https://doi.org/10.1002/ana.24974
Li, N., Baldermann, J. C., Kibleur, A., Treu, S., Akram, H., Elias, G. J. B., Boutet, A., Lozano, A. M., Al-Fatly, B., Strange, B., Barcia, J. A., Zrinzo, L., Joyce, E., Chabardes, S., Visser-Vandewalle, V., Polosan, M., Kuhn, J., Kühn, A. A., & Horn, A. (2020). A unified connectomic target for deep brain stimulation in obsessive-compulsive disorder. Nature Communications, 11, 3364. https://doi.org/10.1038/s41467-020-16734-3
Li, N., Hollunder, B., Baldermann, J. C., Kibleur, A., Treu, S., Akram, H., Al-Fatly, B., Strange, B. A., Barcia, J. A., Zrinzo, L., Joyce, E. M., Chabardes, S., Visser-Vandewalle, V., Polosan, M., Kuhn, J., Kühn, A. A., & Horn, A. (2021). A unified functional network target for deep brain stimulation in obsessive-compulsive disorder. Biological Psychiatry, 90(10), 701–713. https://doi.org/10.1016/j.biopsych.2021.04.006
Wang, F., Dong, Z., Tian, Q., Liao, C., Fan, Q., Hoge, W. S., Keil, B., Polimeni, J. R., Wald, L. L., Huang, S. Y., & Setsompop, K. (2021). In vivo human whole-brain Connectom diffusion MRI dataset at 760 µm isotropic resolution. Scientific Data, 8, 122. https://doi.org/10.1038/s41597-021-00904-z
Goede et al. (DBS Expert Summit 2022)
DBS for Tremor: Network Effects
Goede et al. (DGKN 2022)
DBS for Tremor: Network Effects
Affiliations
Lukas L. Goede1,5, Bassam Al-Fatly1, Clemens Neudorfer4, Ningfei Li1, Vincent J.J. Odekerken2, Martin Reich3, Jens Volkmann3, Rob M.A. de Bie2, Andrea A. Kühn1, Andreas Horn1,4
1 Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité Campus Mitte, Charité – Universitätsmedizin Berlin, Berlin, Germany
2 Department of Neurology, Amsterdam University Medical Center, Amsterdam, The Netherlands
3 Department of Neurology, University Clinic of Würzburg, Würzburg, Germany
4 Center for Brain Circuit Therapeutics, Department of Neurology Brigham & Women’s Hospital, Harvard Medical School, Boston, United States; MAMGH Neurosurgery & Center for Neurotechnology and Neurorecovery (CNTR) at MGH Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
5 BIH – Berlin Institute of Health at Charité – Universitätsmedizin Berlin,
BIH Biomedical Innovation Academy, BIH Charité Junior Clinician Scientist Program, Charitéplatz 1, 10117 Berlin, Germany
References
Deuschl G, Bain P, Brin M. Consensus Statement of the Movement Disorder Society on Tremor. Mov Disord. 2008 Oct 20;13(S3):2–23.
Horn A, Li N, Dembek TA, Kappel A, Boulay C, Ewert S, et al. Lead-DBS v2: Towards a comprehensive pipeline for deep brain stimulation imaging. NeuroImage. 2019 Jan;184:293–316.
Horn A, Reich M, Vorwerk J, Li N, Wenzel G, Fang Q, et al. Connectivity Predicts deep brain stimulation outcome in Parkinson disease: DBS Outcome in PD. Ann Neurol. 2017 Jul;82(1):67–78.
Buckner RL, Krienen FM, Castellanos A, Diaz JC, Yeo BTT. The organization of the human cerebellum estimated by intrinsic functional connectivity. Journal of Neurophysiology. 2011 Nov;106(5):2322–45.
Middlebrooks EH, Okromelidze L, Wong JK, et al. Connectivity Correlates Predicting Deep Brain Stimulation Outcome in Essential Tremor: Evidence for a common treatment pathway. NeuroImage Clin. 2021.
Hollunder & Li et al. (DBS Expert Summit 2022)
Segregating the prefrontal cortex by means of DBS
References
Benarroch, E. E. (2008). Subthalamic nucleus and its connections: Anatomic substrate for the network effects of deep brain stimulation. Neurology, 70(21), 1991–1996. https://doi.org/10.1212/01.wnl.0000313022.39329.65
Bonelli, R. M., & Cummings, J. L. (2007). Frontal-subcortical circuitry and behavior. Dialogues in Clinical Neuroscience, 9(2), 141–151. https://doi.org/10.31887/dcns.2007.9.2/rbonelli
Ganos, C., Al-Fatly, B., Fischer, J.-F., Baldermann, J. C., Hennen, C., Visser-Vandewalle, V., … & Horn, A. (2022). A neural network for tics: insights from causal brain lesions and deep brain stimulation, Brain, awac009. https://doi.org/10.1093/brain/awac009
Haber, S. N., Liu, H., Seidlitz, J., & Bullmore, E. (2021). Prefrontal connectomics: From anatomy to human imaging. Neuropsychopharmacology. https://doi.org/10.1038/s41386-021-01156-6
Haynes, W. I. A., & Haber, S. N. (2013). The organization of prefrontal-subthalamic inputs in primates provides an anatomical substrate for both functional specificity and integration: Implications for basal ganglia models and deep brain stimulation. Journal of Neuroscience, 33(11), 4804–4814. https://doi.org/10.1523/JNEUROSCI.4674-12.2013
Horn, A., Li, N., Dembek, T. A., Kappel, A., Boulay, C., Ewert, S., Tietze, A., Husch, A., Perera, T., Neumann, W. J., Reisert, M., Si, H., Oostenveld, R., Rorden, C., Yeh, F. C., Fang, Q., Herrington, T. M., Vorwerk, J., & Kühn, A. A. (2019). Lead-DBS v2: Towards a comprehensive pipeline for deep brain stimulation imaging. NeuroImage, 184(July 2018), 293–316. https://doi.org/10.1016/j.neuroimage.2018.08.068
Horn, A., Reich, M., Vorwerk, J., Li, N., Wenzel, G., Fang, Q., Schmitz-Hübsch, T., Nickl, R., Kupsch, A., Volkmann, J., Kühn, A. A., & Fox, M. D. (2017). Connectivity predicts deep brain stimulation outcome in Parkinson disease. Annals of Neurology, 82(1), 67–78. https://doi.org/10.1002/ana.24974
Li, N., Baldermann, J. C., Kibleur, A., Treu, S., Akram, H., Elias, G. J. B., Boutet, A., Lozano, A. M., Al-Fatly, B., Strange, B., Barcia, J. A., Zrinzo, L., Joyce, E., Chabardes, S., Visser-Vandewalle, V., Polosan, M., Kuhn, J., Kühn, A. A., & Horn, A. (2020). A unified connectomic target for deep brain stimulation in obsessive-compulsive disorder. Nature Communications, 11, 3364. https://doi.org/10.1038/s41467-020-16734-3
Li, N., Hollunder, B., Baldermann, J. C., Kibleur, A., Treu, S., Akram, H., Al-Fatly, B., Strange, B. A., Barcia, J. A., Zrinzo, L., Joyce, E. M., Chabardes, S., Visser-Vandewalle, V., Polosan, M., Kuhn, J., Kühn, A. A., & Horn, A. (2021). A unified functional network target for deep brain stimulation in obsessive-compulsive disorder. Biological Psychiatry, 90(10), 701–713. https://doi.org/10.1016/j.biopsych.2021.04.006
Wang, F., Dong, Z., Tian, Q., Liao, C., Fan, Q., Hoge, W. S., Keil, B., Polimeni, J. R., Wald, L. L., Huang, S. Y., & Setsompop, K. (2021). In vivo human whole-brain Connectom diffusion MRI dataset at 760 µm isotropic resolution. Scientific Data, 8, 122. https://doi.org/10.1038/s41597-021-00904-z
Mana et al. (DBS Expert Summit 2022)
Instrumental activities of daily living improve in Parkinson’s Disease after STN DBS
References
Brennan, L., Siderowf, A., Rubright, J.D., Rick, J., Dahodwala, N., Duda, J.E., Hurtig, H., Stern, M., Xie, S.X., Rennert, L., Karlawish, J., Shea, J.A., Trojanowski, J.Q., and Weintraub, D. (2016a). Development and initial testing of the Penn Parkinson’s Daily Activities Questionnaire. Mov Disord 31, 126-134. https://doi.org/10.1002/mds.2633
Brennan, L., Siderowf, A., Rubright, J.D., Rick, J., Dahodwala, N., Duda, J.E., Hurtig, H., Stern, M., Xie, S.X., Rennert, L., Karlawish, J., Shea, J.A., Trojanowski, J.Q., and Weintraub, D. (2016b). The Penn Parkinson’s Daily Activities Questionnaire-15: Psychometric properties of a brief assessment of cognitive instrumental activities of daily living in Parkinson’s disease. Parkinsonism Relat Disord 25, 21-26. https://doi.org/10.1016/j.parkreldis.2016.02.020
Rios et al. (DBS Expert Summit 2022)
Optimal stimulation sites and networks for DBS of the fornix in Alzheimer’s Diesease
References
Chen, Guangyu et al. “Staging Alzheimer’s Disease Risk by Sequencing Brain Function and Structure, Cerebrospinal Fluid, and Cognition Biomarkers.” Journal of Alzheimer’s disease : JAD vol. 54,3 (2016): 983-993. doi:10.3233/JAD-160537
Laxton, Adrian W et al. “A phase I trial of deep brain stimulation of memory circuits in Alzheimer’s disease.” Annals of neurology vol. 68,4 (2010): 521-34. doi:10.1002/ana.22089
Lozano, Andres M et al. “A Phase II Study of Fornix Deep Brain Stimulation in Mild Alzheimer’s Disease.” Journal of Alzheimer’s disease : JAD vol. 54,2 (2016): 777-87. doi:10.3233/JAD-160017
Horn, Andreas et al. “Connectivity Predicts deep brain stimulation outcome in Parkinson disease.” Annals of neurology vol. 82,1 (2017): 67-78. doi:10.1002/ana.24974
Li, Ningfei et al. “A unified connectomic target for deep brain stimulation in obsessive-compulsive disorder.” Nature communicationsvol. 11,1 3364. 3 Jul. 2020, doi:10.1038/s41467-020-16734-3
Choi, Ki Sueng et al. “Mapping the “Depression Switch” During Intraoperative Testing of Subcallosal Cingulate Deep Brain Stimulation.” JAMA neurology vol. 72,11 (2015): 1252-60. doi:10.1001/jamaneurol.2015.2564
Horn, Andreas et al. “Lead-DBS v2: Towards a comprehensive pipeline for deep brain stimulation imaging.” NeuroImage vol. 184 (2019): 293-316. doi:10.1016/j.neuroimage.2018.08.068
Wang, Fuyixue et al. “In vivo human whole-brain Connectom diffusion MRI dataset at 760 µm isotropic resolution.” Scientific data vol. 8,1 122. 29 Apr. 2021, doi:10.1038/s41597-021-00904-z
Yeo, B T Thomas et al. “The organization of the human cerebral cortex estimated by intrinsic functional connectivity.” Journal of neurophysiology vol. 106,3 (2011): 1125-65. doi:10.1152/jn.00338.2011
For figure background and structures
Edlow, Brian L et al. “7 Tesla MRI of the ex vivo human brain at 100 micron resolution.” Scientific data vol. 6,1 244. 30 Oct. 2019, doi:10.1038/s41597-019-0254-8
Amunts, Katrin et al. “Julich-Brain: A 3D probabilistic atlas of the human brain’s cytoarchitecture.” Science (New York, N.Y.)vol. 369,6506 (2020): 988-992. doi:10.1126/science.abb4588
Neudorfer, Clemens et al. “A high-resolution in vivo magnetic resonance imaging atlas of the human hypothalamic region.” Scientific datavol. 7,1 305. 15 Sep. 2020, doi:10.1038/s41597-020-00644-6
Amaral, Robert S C et al. “Manual segmentation of the fornix, fimbria, and alveus on high-resolution 3T MRI: Application via fully-automated mapping of the human memory circuit white and grey matter in healthy and pathological aging.” NeuroImage vol. 170 (2018): 132-150. doi:10.1016/j.neuroimage.2016.10.027