A Novel Database Lookup Method for Deep Brain Stimulation Network Mapping

Patricia Zvarova ${ }^{1,2}$, Ilkem Aysu Sahin ${ }^{1,2}$, Ningfei Li ${ }^{1}$, Barbara Hollunder ${ }^{112,3}$, Andrea Kühn ${ }^{1,2,3,4}$, Nanditha Rajamani ${ }^{1 *}$, Andreas Horn ${ }^{1,2,5,6^{*}}$

Affiliations:

1. Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany, 2. Einstein Center for Neurosciences Berlin, Germany, 3. Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany, 4. NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Berlin, Germany, 5. Center for Brain Circuit Therapeutics, Brigham \& Women's Hospital, Boston, MA, USA, 6. Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA

1. INTRODUCTION

Clinical outcomes following deep brain stimulation (DBS) to the subthalamic nucleus (STN) in Parkinson's disease (PD) can be predicted based on functional connectivity (FC) seeding from stimulation sites [1].
Previously, to do so, optimal connectivity was condensed to a single map, which was then compared with connectivity profiles of patients in other cohorts.

AIM: \longrightarrow

We developed a revised strategy, which stores each patient's FC profile and clinical improvements in a look up database and quantifies pairwise similarities to predict unseen patients. Novel patient's FC is compared to each entry in the database. Based on similarities, a weighted average of improvements in database patients is formed to predict outcomes in the unseen patient.

DBS electrode placement in the sample of 51 patients. Electrode reconstructions

2.2 METHODOLOGICAL WORKFLOW

Fingerprints in the
database

Database with brain functional connectivities can be used to predict DBS related clinical improvement.

3. RESULTS

Correlations between estimated and empirical UPDRS-III improvements for different types of cross-validations were:

K10: Pearson's $R=0, .39, p=0.004$

 K7: Pearson's $R=0.36, p=0.009$Leave-one-out: Pearson's $R=0.35, p=0.015$
$\mathrm{K7} \mathrm{CV}: \mathrm{R}=0.36, \mathrm{P}=0.009$

LOO CV: $R=0.35, p=0.015$
 GET IN TOUCH:
(\%) @netstim_org \& @TriciZvar \& http://www.netstim.org © patricia.zvarova@charite.de

4. CONCLUSIONS

We introduce a novel method for DBS network mapping using a lookup database. Potential advantages include:

Model retains more information from the original data.
Direct prediction of clinical response variable.
Certainty variable added to account for the ceiling effect.

