

DBS OPENS A WINDOW INTO THE ORGANIZATIONAL

GRADIENT OF FRONTAL NETWORK (DYS)FUNCTION.

SEGREGATING THE PREFRONTAL CORTEX BY MEANS OF DBS

Barbara Hollunder^{1,2,3*}, Ningfei Li^{1*}, Jill L. Ostrem⁴, Mircea Polosan^{5,6,7}, Harith Akram^{8,9}, Matteo Vissani^{10,11,12}, Chencheng Zhang¹³, Bomin Sun¹³, Martin Reich¹⁴, Jens Volkmann¹⁴, Carsten Finke^{2,3,15}, Andrea A. Kühn^{1,2,3,16}, Alberto Mazzoni^{10,11}, Luigi M. Romito¹⁷, Ludvic Zrinzo^{8,9}, Eileen Joyce^{8,9}, Stephan Chabardes⁵, Philip A. Starr¹⁸, Andreas Horn^{1,2,12,19}
*Equal contributions

INTRODUCTION

Fronto-subcortical neurocircuits are involved in the **motor**,

cognitive, and affective dysfunctions of multiple brain disorders which can be treated by DBS

To investigate the **functional segregation of the prefrontal cortex** via optimal connectivity profiles from DBS electrodes to the **subthalamic nucleus** (STN) treating 4 different disorders

METHODS

Patients: 8 DBS patient cohorts from 7 centers –
dystonia (DYT; N = 76), Parkinson's disease (PD; N = 95), Tourette syndrome (TS; N = 14), and
obsessive-compulsive disorder (OCD; N = 19)

Clinical improvement: Burke-Fahn-Marsden Dystonia Rating Scale (DYT), Unified

Parkinson's Disease Rating Scale–Part III (PD), Yale Global Tic Severity Scale (TS), and Yale-Brown Obsessive-Compulsive Scale (OCD)

<u>Methodological workflow:</u>

(1) Reconstruction of precise DBS electrode placement and stimulation volumes (E-fields) using Lead-DBS software
(2) DBS Sweet-Spot Mapping (A), DBS Fiber Filtering (B) and DBS Network Mapping (C) to identify voxels and *normative* tracts / cortical projection sites related to optimal clinical stimulation outcome per disorder

CONCLUSIONS

RESULTS

By its impact on distributed networks, DBS is a meaningful tool to **functionally segregate the prefrontal cortex**.

A functionally selective, caudo-rostral gradient of cortical

organization is **mirrored within the subcortex** – in spatially compressed form.

This **"information funnel effect"** may explain why DBS to **integrator hubs** (e.g., the STN) is an effective treatment for a variety of brain disorders of heterogeneous phenomenology.

AUTHOR AFFILIATIONS & CONTACT

- 1. Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany
- 2. Einstein Center for Neurosciences Berlin, Charité Universitätsmedizin Berlin, Berlin, Germany
- 3. Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
- 4. Movement Disorders and Neuromodulation Centre, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- 5. Université Grenoble Alpes, Grenoble, France
- 6. Inserm, U1216, Grenoble Institut des Neurosciences, Grenoble, France
- 7. Psychiatry Department, CHU Grenoble Alpes, Grenoble, France
- 8. Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- 9. National Hospital for Neurology and Neurosurgery, UCL Queen Square Institute of Neurology, London, UK
- 10. The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy

- 11. Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Pisa, Italy
- 12. Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- 13. Department of Neurosurgery, Rujin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- 14. Department of Neurology, University Hospital Würzburg, Würzburg, Germany

PROFILE FOR MAXIMAL

- 15. Department of Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany
- 16. NeuroCure Cluster of Excellence, Charité Universitätsmedizin Berlin, Berlin, Germany
- 17. Parkinson and Movement Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- 18. Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- 19. Center for Brain Circuit Therapeutics, Brigham & Women's Hospital, Boston, MA, USA

http://posters.netstim.org

barbara.hollunder@charite.de or ningfei.li@charite.de

@b_hollunder, @NingfeiL or @ netstim_org