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To identify optimal electrode location by investigating effects of stimulation on three levels:
1) Fibertract: white matter tracts traversing Electric-fields informed by a high resolution
normative connectome8.
2) Sweetspot: local-level voxel-wise analysis to identify an optimal stimulation site.
3) Network Mapping: whole-brain network effect informed by resting state fMRI data of 1000
healthy subjects9.

OBJECTIVES

INTRODUCTION
Alzheimer’s Disease (AD) is the most common neurodegenerative disease burdening healthcare
attention without an effective treatment to date1. Deep brain stimulation (DBS) to the fornix is
under investigation for mild AD with completed phase I and II trials2,3, showing cognitive
improvement in some patients and deterioration in others3. As observed in other conditions
treated with DBS4–6, an explanation of these outcomes could lie in variance in electrode
placement engaging distinct neural circuits.

METHODS
Retrospective analysis of a multi-center cohort of 50 patients (25 female, mean age: 67.5 ± 7.9 years) who
underwent fornix-DBS to treat mild AD. Pre- and post-operative MRI volumes of the participants were
processed using the lead-DBS pipeline (lead-dbs.org)7, normalization and electrode localization were manually
refined (WarpDrive tool) and clinical outcomes were measured by changes in the Alzheimer’s Disease
Assessment Scale-cognitive subscale 11 (ADAS-cog score).
At the fibertract level, the subjects were randomly assigned to a Training cohort (n=30) or Test cohort (n=20).
Streamlines correlated to clinical improvement were identified in the Training cohort (Leave-one-out and
K-fold approaches) and then used to predict clinical improvement of the Test cohort (cross-prediction).
For the sweet spot and network mapping analyses, optimal sites and networks were investigated using the
whole cohort and results were cross-validated with a Leave-one-out and multiple K-fold approaches.

RESULTS
These analyses demonstrated that:
1) Modulation of the Papez’ circuit and stria terminalis associated with cognitive improvement
(R = 0.45 at p = 0.026).
2) Optimal stimulation site resided at the interface between fornix and bed nucleus of the stria
terminalis (R = 0.29 at p 0.016).
3) Modulating specific distributed brain networks accounted for optimal outcomes (R = 0.30 at
p = 0.015).

CONCLUSIONS
A potential optimal stimulation target for Alzheimer’s Disease treatment with fx-DBS is proposed.
1) Stimulation of Papez' circuit and bed nucleus of the stria terminalis associated with cognitive improvement.
2) Optimal stimulation site: intersection between fornix and bed nucleus of the stria terminalis.
3) Modulating specific whole-brain networks seems crucial for DBS-induced positive effects on cognition.
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Results summary including DBS fiber filtering, sweetspot mapping and network-mapping models. Three levels of analysis explain similar amount of variance of clinical outcomes when analyzed in circular nature
(scatterplots ∼16-19%) and led to significant cross-validation of clinical outcomes across leave-one-patient-out and k-fold designs. For visualization, patients were distributed into three groups based on their
ADAS-cog score results a year after stimulation (poor responders: blue, middle responders: yellow and top responders: red). Gray shaded areas represent 95% confidence intervals. Analysis results were
superimposed on slices of Big Brain atlas in MNI 152 space.


