SEGREGATING THE PREFRONTAL CORTEX BY MEANS OF DBS

Barbara Hollunder^{1,2,3*}, Ningfei Li^{1*}, Jill L. Ostrem⁴, Mircea Polosan^{5,6,7}, Harith Akram^{8,9}, Matteo Vissani^{10,11,12}, Chencheng Zhang¹³, Bomin Sun¹³, Martin Reich¹⁴, Jens Volkmann¹⁴, Carsten Finke^{2,3,15}, Andrea A. Kühn^{1,2,3,16}, Alberto Mazzoni^{10,11}, Luigi M. Romito¹⁷, Ludvic Zrinzo^{8,9}, Eileen Joyce^{8,9}, Stephan Chabardes⁵, Philip A. Starr¹⁸, Andreas Horn^{1,2,12,19} *Equal contributions

INTRODUCTION

Fronto-subcortical neurocircuits are involved in the **motor**, cognitive, and affective dysfunctions of multiple brain disorders which can be treated by DBS

> To investigate the **functional segregation of the** prefrontal cortex via optimal connectivity profiles from DBS electrodes to the **subthalamic nucleus** (STN) treating 4 different disorders

METHODS

Patients: 8 DBS patient cohorts from 7 centers – **dystonia** (DYT; N =

DBS OPENS A WINDOW INTO THE ORGANI-ZATIONAL GRADIENT OF FRONTAL NETWORK (DYS)FUNCTION.

CONCLUSIONS

SCHOOL OF MIND AND BRAIN

By its impact on distributed networks, DBS is a meaningful tool to functionally segregate the prefrontal cortex.

A functionally selective, caudo-rostral gradient of cortical organization is **mirrored within the subcortex** – in spatially

This "information funnel effect" may explain why DBS to integrator hubs (e.g., the STN) is an effective treatment for a variety of brain disorders of heterogeneous phenomenology.

