SUBTHALAMIC DEEP BRAIN STIMULATION: MAPPING NON-**MOTOR OUTCOMES TO STRUCTURAL CONNECTIONS**

G.M. Meyer¹, B. Hollunder², K. Butenko¹, C. Neudorfer³, A.A. Kühn², P.E. Mosley⁴, A. Horn^{1,2,3}

1-Center for Brain Circuit Therapeutics, Briaham and Women's Hospital and Harvard Medical School, Boston — 2-Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité Universitätsmedizin, Berlin – 3Department of Neurosurgery, Massachusetts General Hospital, Boston – 4QIMR Berghofer Medical Research Institute, Queensland Brain Institute and University of Queensland, Brisbane

INTRODUCTION

- In Parkinson's disease, deep brain stimulation of the subthalamic nucleus reliably improves motor symptoms, but non-motor outcome is variable
- -motor outcome could be improved by stimulating or avoiding specific brain circuits.
 vever, this approach is limited since numerous non-motor symptoms would need to be accounted fo

Improvement of cognition and worsening of trait impulsivity, improvement of mood

- We aimed to identify key dimensions of neuropsychological and neuropsychiatric outcome
- · We identified the structural connections whose stimulation was associated with these dimensions.
- Finally, we tested whether stimulation of these structural connections could predict individual symptom outcomes

DBS electrode positions **Principal Component Analysis of outcomes** Contributions to PC 2

METHODS

- Rigishane, Australia).

 Identification of the main dimensions of non-motor outcome: Principal Component Analysis (PCA) applied on ten clinical scores assessing
- changes in cognition, appetitive behaviors, anxiety and mood, impulsivity, and empathy
- Localization of the DBS electrodes and electric field (E-field) modeling using the Lead-DBS toolbox.

 Structural connectivity analysis: Identification of the fiber tracts whose stimulation was associated with the principal component (PC) scores based on a normative structural connectione ("Fiber-filtering"). Change in LED0 used as a covariate.
- Prediction of individual symptom outcomes based on overlap with the tracts and PCA decomposition
- Validation in an independent cohort.

Fiber tracts associated with principal components

RESULTS

Out-of-sample validation

Independent cohort of 32 Parkinson's Disease patients with bilateral subthalamic stimulation assessed for

PC4: Improvement of empathy, worsening of ICBs

depression (Berlin, Germany). Overlap with the identified tract bundles could predict

In-sample correlation between overlap with fiber tracts and PC scores

In-sample correlation with clinical outcomes

- Overlap with the identified tract bundles could explain variance in individual symptom outcomes
- Permutation statistics showed that this model explained individual symptom outcomes better that can be expected by chance (as indicated by *

CONCLUSIONS

- Changes along an extensive neuropsychiatric score battery were mapped to the modulation of four tract bundles in the human brain.
- The degree of modulation of these tracts was able to explain variance in individual symptom outcomes both in-sample and out-of-sample.
- The proposed approach could pave the way towards personalized deep brain stimulation tailored at the patient's symptoms.

We propose a new approach to map changes along extensive clinical score batteries to the modulation of a small set of fiber tract bundles in the human brain - These tracts might be used to predict and improve the outcome of deep brain stimulation.

