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ABSTRACT: Background: Finding the optimal deep
brain stimulation (DBS) parameters from a multitude of
possible combinations by trial and error is time consum-
ing and requires highly trained medical personnel.
Objective: We developed an automated algorithm to
identify optimal stimulation settings in Parkinson’s dis-
ease (PD) patients treated with subthalamic nucleus
(STN) DBS based on imaging-derived metrics.
Methods: Electrode locations and monopolar review data
of 612 stimulation settings acquired from 31 PD patients
were used to train a predictive model for therapeutic and
adverse stimulation effects. Model performance was then
evaluated within the training cohort using cross-validation
and on an independent cohort of 19 patients. We inverted
the model by applying a brute-force approach to deter-
mine the optimal stimulation sites in the target region.
Finally, an optimization algorithm was established to iden-
tify optimal stimulation parameters. Suggested stimulation
parameters were compared to the ones applied in clinical
practice.

Results: Predicted motor outcome correlated with
observed outcome (R = 0.57, P < 10�10) across patients
within the training cohort. In the test cohort, the model
explained 28% of the variance in motor outcome differ-
ences between settings. The stimulation site for maximum
motor improvement was located at the dorsolateral border
of the STN. When compared to two empirical settings,
model-based suggestions more closely matched the set-
ting with superior motor improvement.
Conclusion: We developed and validated a data-driven
model that can suggest stimulation parameters leading to
optimal motor improvement while minimizing the risk of
stimulation-induced side effects. This approach might pro-
vide guidance for DBS programming in the future. © 2021
The Authors. Movement Disorders published by Wiley Peri-
odicals LLC on behalf of International Parkinson and Move-
ment Disorder Society
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Deep brain stimulation (DBS) targeted at the sub-
thalamic nucleus (STN) is highly efficacious in improv-
ing motor symptoms in Parkinson’s disease (PD).1

Current devices allow to adapt stimulation parameters
to optimize therapeutic benefit according to patients’
individual electrode placement and anatomy. However,
in clinical practice, DBS programming currently follows
a trial-and-error basis without deliberate guidance from
these factors. In addition, the vast amount of parameter
combinations, especially with octopolar DBS leads, can-
not be tested individually in clinical routine. Even test-
ing an informed subset of parameter combinations is
tiring for both patient and medical personnel.
A clear relation between outcomes and one of the afore-

mentioned factors—electrode placement—has been
achieved over recent years,2-7 namely, multiple studies con-
cluded optimal stimulation sites to be localized at the dorso-
lateral border of the STN—at least when the aim was to
explain variance across all symptoms covered by the motor
part of the Unified Parkinson’s Disease Rating Scale
(UPDRS).8-11 Symptom-specific stimulation sites have been
suggested8,12,13 but have not reached consensus across
studies. Among these, more dorsally situated stimulation
sites for optimal tremor reduction seem to be a robust
finding.
Going one step further, first approaches aimed at cre-

ating automated programming based on DBS electrode
localizations.14-19 In a sense, these current approaches
could be considered as a “model inversion” of optimal
stimulation sites, that is, to derive stimulation settings
that maximally engage predefined sweet-spot locations.
Such guided DBS programming has becomemore impor-

tant by the introduction of eight-contact directional elec-
trode designs.20 These devices allow to distribute current in
1% steps across eight contacts, leading to an overwhelming
number of �1010 possibilities of cathodal current distribu-
tion (even excluding bipolar settings). Adding additional
contacts, such as 16 contact electrodes that are currently in
clinical testing or 32 contact electrodes,21 aiming to widen
the therapeutic windowwill lead to an exponential increase
in combinatorial possibilities (16 contacts: �1018, 32 con-
tacts: �1030). In combination with other DBS parameters
such as frequency and pulse width, exhaustively exploring
the possibilities by clinical trial and error becomes an
impossible endeavor, increasing the risk of selecting a sub-
optimal setting. At such a level, (semi-)automated program-
ming strategies will become indispensable. Reducing the
number of settings that need to be tested based on algorith-
mic pre-suggestions might therefore not only improve clini-
cal benefit today but also facilitate future technological
progress.
Currently, axonal activation models are considered state

of the art. These models aim at solving the relationship
between anatomical properties, electrode localization,
applied electrical current, and subsequent firing of action
potentials by axons of passage. Potential limitations of these

models include that they require (1) exact anatomical defini-
tions of pathways—which have shown to greatly impact
fiber activation but simultaneously challenging if impossible
to derive in a patient-specific manner,22-25 and (2) a multi-
tude of assumptions about the bioelectrical properties of
the tissue. These include fiber diameters and myelination,
degree of arborization, heterogeneity and anisotropy of tis-
sue conductivity, and specific properties of the electrode tis-
sue interface, including the encapsulation and the electrical
double layer. Although some of them and similar parame-
ters have been derived from animal studies,26 their exact
values remain unknown in individual patients.27-29 Finally,
action potential initiation is likely not the only relevant
mechanism of action in DBS. Modulation of glial cells and
intracellular cascades, transmitter depletion, and effects on
complex network dynamicsmight contribute to therapeutic
and/or unwanted effects.30 Subsequently, alternative
approaches that are slightly more naive to the biophysical
models could potentially provemore robust toward a priori
assumptions and therefore be considered to capture and
predict DBS effects.
In the present study, a less-mechanistic approach was

chosen, which is free from biological assumptions but still
makes limited physical assumptions (eg, conductance of tis-
sue). This model was integrated in a pipeline that is able to
suggest optimal contacts and stimulation amplitudes in PD
patients treated with STN-DBS. In the first step, we devel-
oped a novel approach capable of predicting motor
improvements and side-effect probabilities based on the
properties of the electric field (E-field) in the target region by
harnessing a voxel-wise ensemble voting system. Themodel
was trained and cross-validated on a large sample of stan-
dardizedmonopolar review data.13,31 In the second step, its
performance was tested on an independent cohort from a
different center,32 and optimal stimulation targets (“sweet
spots”) were identified. Finally, to derive at automatic sug-
gestions of optimal DBS settings, we implemented an
optimization algorithm that could consider motor improve-
ments and side effects in parallel. Differences between auto-
mated and clinical settings in the test cohort were quantified
to assess whether automated settings could have potentially
led to superior clinical outcome.

Patients and Methods
Training Data Set

We included 31 patients who underwent bilateral STN-
DBS at the University Hospital Cologne.13,31 In brief, all
patients underwent extendedmonopolar reviews after over-
night withdrawal of dopaminergic medication. Data were
obtained from both electrodes in 15 and unilaterally in
16 patients resulting in 46 electrodes (25 Medtronic 3389,
20 Boston Scientific Cartesia Directional, and 1 Boston Sci-
entific linear eight contact). Single contacts were interro-
gated by increasing stimulation amplitudes in 1-mA steps to
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a maximum of 5 mA or until nontransient side effects
occurred. At each step rigidity, tremor, and akinesia were
rated according to items 20 to 23 and 25 of the UPDRS,
Part III. In this way 14 � 5 settings were evaluated per elec-
trode resulting in 612 settings. Stimulation frequency and
pulse width were set at 130 Hz and 60 μs during the inter-
rogation. Motor improvement was reported as relative
change of the summedUPDRS items compared to baseline.

Test Data Set
The test data set consisted of 19 additional PD

patients who underwent bilateral STN-DBS at
Charité—Universitätsmedizin Berlin.32 Clinical data were
prospectively acquired within the scope of a study that
investigated the effects of algorithm-guided DBS program-
ming based on kinematic feedback. In this sample, two
stimulation settings and corresponding clinical improve-
ments were available, resulting from a prospective study
in which the effectiveness of algorithm-guided program-
ming based on kinematic feedback was compared to
standard-of-care settings in a double-blind crossover
design. In detail, wearable finger sensors were used to iter-
atively explore different stimulation settings based on
motor performance until convergence to an optimal
algorithm-based setting. UPDRS, Part III, scores were then
evaluated by the same rater (G.W.) for both standard clin-
ical and algorithm-based settings (further labeled as set-
tings 1 and 2) in a double-blind crossover design and
after a sufficient wash-in period.

Electrode Localization
Electrodes were reconstructed and normalized into

the Montreal Neurological Institute (MNI) space
(2009b, nonlinear, asymmetric) following the updated
(v.2) default pipeline implemented in the Lead-DBS
toolbox (www.lead-dbs.org33,34). Briefly, linear regis-
trations between preoperative magnetic resonance
imaging and postoperative computed tomography
(CT) scans were performed using Advanced Normaliza-
tion Tools (ANTs; http://stnava.github.io/ANTs/35).
Normalization to MNI space was carried out using a
multispectral implementation of the ANT symmetric
diffeomorphic registration approach. PaCER and
DiODe algorithms were used to reconstruct electrode
locations and rotation postoperative CT imaging.36,37

Left hemispheric electrodes were nonlinearly flipped
to the right hemisphere. All steps were meticulously
inspected and manually refined, if needed, to ensure
maximal precision of lead localizations.

E-Field Simulation
A volume conductor mesh was constructed in tem-

plate space using the tetrahedral mesh generator
“TetGen” as included in Lead-DBS.34,38,39 Conductivity
(κ) values were assigned to each tetrahedral element as

contact material (κ = 108 S/m), insulator (κ = 10�16 S/
m), or neural tissue (κ = 0.2 S/m). E-fields were then
estimated by determining the static formulation of Lap-
lace’s equation using the finite element method on a dis-
cretized domain represented by the three-compartment
mesh. This was performed using an adaptation of the
FieldTrip-SimBio pipeline as implemented within Lead-
DBS.40,41 Analogous to the approach recently published
by Baniasadi et al, computational demands were vastly
reduced by avoiding FEM simulations for changes in
amplitudes across settings but instead exploiting the lin-
earity of Laplace’s equation.42 In short, an E-field tem-
plate was generated once for each contact based on
1-mA cathodal stimulations. Scalar multiplication or
superposition of these templates then allowed for simu-
lating different stimulation amplitudes or multicathode
configurations, respectively, without the need for com-
putationally expensive FEM simulations.

Vector-Field Model
The novel approach outlined in this section was

developed to predict DBS outcome based on the shape
and magnitude of the E-field in the vicinity of the elec-
trode (Fig. 1 graphically summarizes the following par-
agraph). E-field vectors were resampled on an isometric
grid of 125,000 voxels of 0.8-mm size. Each voxel was
further radially divided into 26 cone-shaped spherical
sectors (together representing a sphere). Depending on
its directionality, an E-field vector present at each voxel
would fall into one of these sectors. Sectorizing there-
fore allowed storing information about the shape of the
E-field. Next, in a mass-univariate attempt, generalized
linear mixed-effects models were created for each sector
and fit to clinical outcomes based on the magnitudes of
the E-field vectors. Sectors that contained fewer than
30 data points were excluded. Because training data
were based on monopolar reviews, they contained
repeated measures for each electrode. To account for
this, electrode IDs were included in the model as a ran-
dom effect.
Whereas linear models were used to describe the rela-

tionship between the magnitude of the E-field and
motor improvement, side-effect occurrence was
modeled as a binary outcome using logistic regression.
Using data from the test cohort, valid models were

determined iteratively, and a probability density func-
tion describing the probability distributions of predicted
motor improvements and side-effect probabilities at
each of the 125,000 voxels was calculated. Finally,
these predictions were combined accounting for their
individual accuracies by averaging their probability
density functions to obtain an overall probability distri-
bution. For more details on the vector-field model, we
refer the reader to Appendix S1.
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FIG. 1. Vector-fieldmodel. First row: simulation of E-fields generated by stimulation settings of patients 1, 2, and 3. Second row: motor outcome and side-effect
models of voxel A are represented as polar plots thatwere radially divided into sectors.Magnitudes and clinical outcomeof all vectorswithin one sector were used
to train a generalized-mixed-effects model. Vectors of example patients 1 to 3 are plotted in purple, turquoise, and yellow. Sectors are colored according to the
predicted clinical outcome in respect to vector magnitudes. Third row: the E-field of an out-of-sample patient is shown in the central panel framed in red. The vec-
tor of voxel A is shown in the polar plot as a dashed red arrow pointing toward the 90� sector. The predicted probability density functions of voxel A for motor and
side effects are shown on the left and right, respectively. Fourth row: exemplarymodels of voxelsB andC are shown together with their predicted solutions for the
out-of-sample patient. Stochastic integration of all 125,000 voxel-wise predictions was carried out by averaging probability density functions, and their maxima
were treated as final solutions. [Color figure can be viewed at wileyonlinelibrary.com]
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Model Validation
Model performance within the training cohort was

assessed using a fourfold cross-validation scheme. In
detail, vector-field models were trained four times after
dividing the training data into four random sets of
approximately equal size. In each iteration, the model
was trained on three sets to cross-predict motor out-
comes and side-effect probabilities in the remaining set.
Finally, model performance was evaluated by calculat-
ing the Pearson’s correlation coefficient between
observed and predicted motor improvement. Model
performance regarding side effects was quantified by
calculating the area under the receiver operating char-
acteristic (ROC) curve. In addition, medians and
interquartile ranges (IQRs) of predicted side-effect
probabilities between settings with and without side-
effect occurrence were obtained.
After model validation within the training sample, its

predictive utility was further assessed in the indepen-
dent test cohort. Performance was quantified by the
Pearson correlation coefficient between predicted and
observed differences in motor outcomes between the
two settings. Here, performance of the side-effect arm
of the model could not be evaluated because the test
cohort constituted long-term DBS effects in which none
of the settings induced permanent side effects.

Calculating an Optimal Stimulation Target
Exploiting the model to predict outcomes at arbitrary

stimulation sites made it possible to estimate an optimal
stimulation target (sweet spot). Here, we repeatedly
simulated stimulations at each of the aforementioned
125,000 points in MNI space (corresponding to and
surrounding the STN target region). At each point,
2 mA was applied on a circular contact, and predicted
motor outcomes and side-effect probabilities were
obtained and visualized. In a subsequent analysis, vec-
tor models were recalculated separately for tremor
(UPDRS items 20 and 21) and akinetic-rigid symptoms
(UPDRS items 22, 23, and 25). Here, symptom-specific
sweet spots were obtained for both models following
the same approach.

Nonlinear Optimization
Thus far, a novel data-driven approach that allowed

to predict clinical effects of DBS settings based on the
properties of the E-field in the subthalamic region had
been developed and validated. However, these models
would not result in actual optimal stimulation parame-
ters that could maximally engage the optimal stimula-
tion site (and avoid inducing side effects).
To do so, we implemented a solver based on the

interior-point method43 (Fig. 2). In short, this method
iteratively minimizes (1) an objective function (negative
motor improvement) and (2) constraint violations such

as side-effect probabilities. Both conditions are related
by a barrier function that is updated with each itera-
tion. Finally, the optimizer converges when stopping

FIG. 2. Multistart optimization within the StimFit algorithm. First row: bar plot
showing predicted motor improvements in respect to stimulation amplitudes
at contacts 1 to 8. Settings with predicted side-effect probabilities exceeding
the predefined threshold of 20% are shown in red and excluded from further
analysis. Second row: optimal monopolar settings were identified for each
contact and used as starting points for the optimizer. Third row: gradient
descent optimization illustrated on two contacts x and y, starting at optimal
monopolar settings A and B, respectively. Distribution of electric current was
iteratively changed (white arrows) to find the optimal solution while avoiding
settings with predicted side-effect probabilities greater than the predefined
threshold of 20% (red areas). Both runs converged on approximately the same
global minimum. Fourth row: final multicathode solution with greatest
predicted motor improvement. Contacts were colored according to the distri-
bution of electric current. [Color figure canbe viewedatwileyonlinelibrary.com]
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criteria such as minimum step sizes (step tolerance) or
motor improvements (function tolerance) are fulfilled.
In other words, the algorithm iteratively explores differ-
ent combinations of stimulation settings to find the
solution with optimal motor benefit, avoiding solutions
with predicted side-effect probabilities greater than
the predefined threshold. In addition, depending on the
technical restrictions of the implanted DBS device,
the algorithm allowed to define further constraints like
minimum and maximum current per contact as well as
maximum total current. Details of this algorithm are
provided in Appendix S1, which also includes a descrip-
tion of measures implemented to reduce computational
cost to maximize processing speed. The complete algo-
rithm was condensed in a MATLAB-based graphical
user interface and will be referred to as StimFit
subsequently.

Validation of Automatically Derived Optimal
Stimulation Settings

The StimFit algorithm was applied on all
19 patients from the test cohort. To test whether
StimFit settings suggested by the algorithm were asso-
ciated with superior clinical outcome, agreements
between StimFit and the two empirical stimulation
settings were calculated using Dice similarity coeffi-
cients for each pair of the three volumes of tissue acti-
vated (VTAs). VTAs were directly derived from
E-fields by thresholding the norm at a vector magni-
tude of 0.2 V/mm.6,44 Finally, differences in clinical
outcomes between the two empirical settings were
correlated with differences in their Dice coefficients
with the automated settings. Intuitively, a high corre-
lation in this analysis would imply that settings with
stimulated regions similar to the ones suggested by
the StimFit algorithm would be associated with better
clinical improvements.

Results

The training cohort consisted of 612 stimulation set-
tings in 31 patients with 46 DBS electrodes (16 unilat-
eral cases) (Fig. 3A). Amplitudes were progressively
tested from 0 to 5 mA in steps of 1 mA. Two patients
were excluded due to suboptimal image quality.
Tremor was present at baseline while testing 18 of
46 electrodes. Limiting side effects occurred in 127 of
167 tested contacts. If side effects occurred at ampli-
tudes below 5 mA, it was assumed they would persist
at higher amplitudes as well.
Within the fourfold cross-validation within the train-

ing sample, estimated motor improvements significantly
correlated with observed improvements in R = 0.57
(P < 10�10) (Fig. 4A). Median predicted side-effect
probabilities in settings without observed side effects

were 9% (IQR: 2%–37%) as opposed to 76% (IQR:
43%–93%) in settings where side effects were observed
(P < 10�10). The area under the ROC curve was 0.84
(Fig. 4B).
The model was then tested on an independent cohort

of 19 patients, each having received two different stim-
ulation settings (1 and 2) (Fig. 3B). Motor improve-
ments and side-effect probabilities of both settings were
predicted using the vector models fit to data within the
complete training data set. Because the overall goal of
this project was to identify the optimal setting within
one patient, model performance was assessed by its
ability to estimate the difference in clinical outcomes
between both settings. Therefore, differences in motor
improvements between the two settings were calculated
for both predicted and observed clinical outcomes.
Doing so would automatically control for the “patient
factor” (age, sex, disease duration, etc.). The model
explained 28% of the variance in motor outcome dif-
ferences (R = 0.53, P < 10�3) (Fig. 4C). Despite these
considerations about the “patient factor,” it was still
possible to significantly predict absolute outcomes
across settings and patients, albeit to a lesser degree
(R = 0.36, P < 10�3).
Mapping grid-wise predictions of 2-mA cathodal

stimulations at 125,000 locations in standard MNI
space estimated an optimal motor improvement (aver-
aging to 26%) for a contact position centered in the
region of the dorsolateral STN border (Fig. 5; peak at

FIG. 3. Contact locations. Panels (A) and (B) showing the subthalamic
nucleus (orange) as well as internal (light green) and external (light blue)
parts of the globus pallidus. (A) Contact locations of the training cohort
are shown as green spheres. (B) The contact locations of the test
cohort with red and blue contacts active in settings 1 and 2, respec-
tively, and purple and white contacts active in both or none of the set-
tings. [Color figure can be viewed at wileyonlinelibrary.com]
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MNI coordinate x = 13.5, y = �14.0, z = �3.6 mm).
Side-effect probabilities ranged from 8% to 13% and
increased in regions of the ventral STN, substantia
nigra pars reticulata, and internal capsule compared
to lower side-effect probabilities in the dorsal STN,
zona incerta, and ventral thalamic regions. Sub-
analyses of sweet spots for tremor and akinetic-rigid
symptoms showed an anatomical separation of the
two symptoms (Figure S2) with a maximum of (aver-
aged) 23% improvement in akinetic-rigid symptoms
when stimulating in the region of the dorsolateral
border of the STN (peak at x = 13.4, y = �14.2,
z = �3.8 mm) and optimal tremor improvement aver-
aging at 45% in the zona incerta close to the ventral
intermediate nucleus of the thalamus (x = 14.2,
y = �15.0, z = �2.1 mm). Vector-field models

validated in the previous sections were used as back-
bone models to identify optimal stimulation (StimFit)
settings that would lead to optimal motor improve-
ments while accounting for side effects.
StimFit settings were calculated for all patients

from the test cohort. Agreements between StimFit
and empirical settings were estimated using Dice coef-
ficients between resulting VTAs. Greater spatial
agreement between clinical stimulation settings and
the ones suggested by StimFit setting was associated
with better clinical improvement (R = 0.29,
P = 0.041) (Fig. 4D). Electrode locations and StimFit
settings for 3 representative patients (9, 11, and 18)
are shown in Figure S1. Contact coordinates in MNI
space as well as optimizer solutions of all patients are
provided in Table S1.

FIG. 4. Statistical results of the predictive model. (A) Linear models showing the relationship between predicted and observed motor improvements
(fourfold cross-validation design) in the training cohort across all (thick green line) and within individual (dashed green lines) electrodes. (B) Receiver
operating characteristic (ROC) curve (orange) of the side-effects model in the training cohort. (C) Relationship between predicted and observed differ-
ences in clinical outcomes (settings 1 vs. 2) in the test cohort. (D) Relationship between observed differences in clinical outcomes (settings 1 vs. 2) and
spatial agreements between the two settings to the StimFit setting (quantified by Dice coefficients). [Color figure can be viewed at
wileyonlinelibrary.com]
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Discussion

In this study we developed and validated a data-
driven approach to automatically suggest STN-DBS
stimulation parameters that would lead to maximal
therapeutic benefit with a low risk of inducing side
effects in patients with PD.
We did so in a three-step approach, first, by creating

voxel-segment-based mixed models, each giving a predic-
tion of stimulation effects as a function of prevalent E-field
vector directions and magnitudes. This led to an ensemble
model that could derive robust estimates of the overall effect
induced by stimulation. We validated the approach in an
independent test cohort of patients. Second, we applied
hypothetical stimulations to the model to obtain an optimal
stimulation sweet spot both for generalmotor improvement
and for specific subsymptoms, as well as sour spots that
would carry a high probability to induce side effects.

Finally, we added a solver to themodel that could automati-
cally suggest stimulation parameters considering both ther-
apeutic benefit and side-effect probabilities. We validated
these automated suggestions retrospectively and concluded
that parameter settings suggested by StimFit would indeed
be associated with optimal clinical outcomes. Future pro-
spective trials should further validate the model for clinical
routine.

Vector-Field Model
Whereas many previous approaches to guide DBS

parameter selection were based on visual,15,19,45,46

kinematic,32 or electrophysiological feedback,47 this study
proposes a fully automated algorithm, which suggests opti-
mal stimulation settings based on neuroimaging data. The
model underlying our approach is based on the properties
of the E-field in the target area, which crucially considers

FIG. 5. Optimal stimulation sites (sweet-spot analysis). By “inverting” the predictive model in a brute-force manner, optimal stimulation sites (sweet
spots) and regions with maximal probabilities to induce side effects (sour spots) could be calculated. Sagittal (top right), frontal (bottom left), and axial
(bottom right) slices of the BigBrain Atlas 1 are shown at their intersection level with the peak coordinate of the sweet spot (x = 13.5, y = �14.0,
z = �3.6). The right subthalamic nucleus is outlined by a dashed blue line. Maximum motor outcome (>26%) was predicted when the active contact
was located within the area circled in black. Areas with increased side-effect probabilities are colored in shades of red. A, anterior; P, posterior;
V, ventral; D, dorsal; L, lateral; M, medial. [Color figure can be viewed at wileyonlinelibrary.com]
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directionality of the voltage gradient. Directionality of the
voltage distribution has impacted axonal activations in sil-
ico and in vivo and has been neglected by approaches that
build on binary VTAmodels.24,25

Model Validation and Anatomical Implications
Results could validate an E-field-based modeling

approach both quantitatively and anatomically. Model
performance within the training cohort was comparable
to the performance in a cross-center independent test
cohort, indicating generalizability of the model.
In line with most recent studies, the sweet spot for opti-

mal overall clinical improvement was situated at the dor-
solateral border of the STN.8-10,12,13,48 Symptom-specific
sweet-spot analysis of the model showed optimal sup-
pression of akinetic-rigid symptoms again in the dorso-
lateral region of the STN, whereas tremor suppression
was greatest in the zona incerta close to the ventral inter-
mediate nucleus of the thalamus. These findings are in
line with accumulating evidence, suggesting that the
dentato-rubro-thalamic tract might be a common target
structure for tremor suppression across multiple underly-
ing pathologies.2,49-52 However, in the case of parkinso-
nian tremor, stimulating the STN proper might bear
therapeutic effects as well.53 Nonetheless, the symptom
specificity related to different anatomical target struc-
tures indicates that individual symptomatology could
influence the optimal contact selection.

Optimization Problem
Finding an optimal solution of a complex problem with

multiple input variables and possible constraints is a typi-
cal engineering problem. (Non)linear programming algo-
rithms allow to solve these types of problems in a time-
efficient manner. To improve speed and efficacy in our
approach, “monopolar reviews” were simulated first, and
optimal monopolar solutions for all contacts were used as
starting points for the optimizer, in parallel (see Appendix
S1 and Fig. 2). This resembled the procedure of the clini-
cal routine involved in DBS programming, in which
monopolar settings are often explored first before even
beginning to test the more complex multipolar settings.54

Furthermore, this ensured that the optimizer would only
suggest multicathode solutions when an additional clinical
benefit was predicted compared to monopolar settings.
Other groups have used similar mathematical optimi-

zation strategies for automated DBS programming in the
past. Anderson and colleagues applied linear program-
ming to identify contacts that would maximize the stimu-
lation of target structures and minimize the activation of
regions of avoidance in silico.14 Interestingly, this
approach generalized well for electrodes of variable
designs, including the Medtronic Sapiens electrodes
(which with 32 contacts would be too complex to be
manually programmed). Similarly, Vorwerk and

colleagues demonstrated the use of constrained optimiza-
tion algorithms to identify multicathode contact configu-
rations leading to a maximum in silico activation of the
ventral intermediate nucleus of the thalamus and mini-
mal activation of surrounding, possibly side-effect-
inducing thalamic nuclei.17 In all of the five electrodes
tested, the best clinical contacts were also assigned the
maximum voltage by the algorithm. Using patient-
specific anatomical data, Pena and colleagues demon-
strated the use of particle-swarm optimization for
optimization problems with multiple objectives.16 This
allowed to identify multicathode stimulation settings that
would maximize activation of multiple target pathways
although minimizing the activation of others. This might
be of special interest considering the aforementioned
strategy to engage multiple symptom-specific targets in
PD but could also be of importance for optimization
problems that simultaneously use multiple input modali-
ties, as suggested in recent publications.27,47

Limitations
First, the assessment ofmonopolar review data,which have

been used for training our model, has certain limitations.
Those include a short wash-in period, imposing the risk of
introducing bias toward short-term effects. Further,
thresholding stimulation amplitudes at 5 mA (or permanent
side effects) might introduce a potential ceiling bias because
some effects might be observed only at higher amplitudes.
Similarly, a step size of discretized amplitude increases (1mA)
may represent a certain sampling bias. In our opinion how-
ever, those disadvantages are outweighed by the benefits of
standardized monopolar reviews. Those include an increased
intraindividual outcome variability, unbiased selection of
DBS settings, and evaluation of motor as well as side effects
by the same rater at the same timepoint. Furthermore, limita-
tions seem not to have impacted model performance to a
degree that disenabled it to predict chronic UPDRS, Part III,
improvements in an independent test cohort. Predictions of
side effects, on the contrary, could not be evaluated in the test
cohort because none of the chronic settings induced any per-
manent side effects. High-quality data sets of systematically
assessed DBS-induced side effects are warranted to validate
and potentially optimize ourmodel.
Next, our training data consisted of a heterogenous col-

lection of different electrode models that might potentially
impact our analysis. However, this reflects the heterogene-
ity in clinical practice, andwe therefore assume that this will
increase the generalizability of ourmodel.
This study uses a novel approach to predict outcome based

on simulations of estimates of the E-field surrounding the elec-
trodes. Different complexities of volume conductor models
were used in the past, and in silico analyses have indicated that
the choice of the model will impact simulated fiber activa-
tions.55 Increasing the complexity of conductor models might
improve accuracies in our approach but would also entail a

Movement Disorders, 2021 9

A D A T A - D R I V E N A L G O R I T H M F O R D E E P B R A I N S T I M U L A T I O N
P R O G R A M M I N G



set of free parameters that need to be tuned due to ambiguities
in biophysical tissue properties described in the literature.28,29

We therefore chose to use a model with homogeneous tissue
properties in template space using typical conductivity values
fromprevious studies. Furtherwork needs to be carried out to
explore the potential benefit of increasing model complexity
andnative space simulations.
Further, in silico analyses of VTA-based predictive

modeling approaches have shown to highly vary depending
on their methodological details.56 In this study we devel-
oped a novelmethod aiming at overcoming some of the lim-
itations inherent to the concept of (binarized) VTA using a
more nuanced, nonbinary concept in the form of E-field
vectors. However, we do not provide evidence for the supe-
riority of this choice. It is crucial to note that our choice of
E-field vectors should not be interpreted as a disapproval of
the VTAmodel but rather as an additional option to model
DBS effects. Further in silico studies and head-to-head com-
parisons of different modeling approaches based on empiri-
cal multicenter data would be ideal to compare the utility of
VTA versus E-field versus othermodeling concepts.
Although agreement between empirical and model-

based predictions of clinical improvements should be
considered well (R > 0.5), similarities between StimFit
and empirical settings (quantified as Dice coefficients)
were only moderately correlated to clinical improve-
ments (R = 0.29). We believe that, among others, the
following reasons could be at play. First, Dice coeffi-
cients are a somewhat vague metric to assess similarities
between settings. In other words, VTAs of different
sizes and locations can lead to the same Dice coefficient,
whereas stimulation effects may be different. Second, as
discussed in this manuscript, the VTA itself as a predic-
tor of stimulation effects inherits several limitations.
Third, we are comparing parameter suggestions not to
the optimal setting but to a sample drawn from all
potential settings that are considered optimal in clinical
routine. Settings other than the ones suggested by our
model might therefore lead to comparable clinical
effects. Therefore, the indirect validation of StimFit
results needs to be interpreted with caution, and pro-
spective evaluation of the model is required to fully
assess the potential benefit of our guided programming
approach. A prospective, randomized crossover nonin-
feriority trial with this aim is currently ongoing (https://
www.drks.de, study ID: DRKS00023115).

Conclusion

Our model was trained to suggest DBS parameters that
would lead to optimal stimulation outcomes while account-
ing for stimulation-induced side effects. Themodel was vali-
dated by cross-validating within a training cohort and by
predicting motor improvement in an independent test
cohort. A clinical trial to prospectively validate the model is

currently ongoing. In the future, our approach might help
to guide DBS programming and could allow translation of
scientific results from bench to bedside.
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