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ABSTRACT
Obsessive-compulsive disorder is among the most disabling psychiatric disorders. Although deep brain stimulation is
considered an effective treatment, its use in clinical practice is not fully established. This is, at least in part, due to
ambiguity about the best suited target and insufficient knowledge about underlying mechanisms. Recent advances
suggest that changes in broader brain networks are responsible for improvement of obsessions and compulsions,
rather than local impact at the stimulation site. These findings were fueled by innovative methodological approaches
using brain connectivity analyses in combination with neuromodulatory interventions. Such a connectomic approach
for neuromodulation constitutes an integrative account that aims to characterize optimal target networks. In this
critical review, we integrate findings from connectomic studies and deep brain stimulation interventions to charac-
terize a neural network presumably effective in reducing obsessions and compulsions. To this end, we scrutinize
methodologies and seemingly conflicting findings with the aim to merge observations to identify common and diverse
pathways for treating obsessive-compulsive disorder. Ultimately, we propose a unified network that—when modu-
lated by means of cortical or subcortical interventions—alleviates obsessive-compulsive symptoms.

https://doi.org/10.1016/j.biopsych.2021.07.010
Deep brain stimulation (DBS) for obsessive-compulsive dis-
order (OCD) can be an effective treatment for severely affected
and treatment-refractory cases (1–3) but is still not considered
a fully established therapy (4). This is at least in part due to
uncertainty about the precise brain networks to modulate for
optimal treatment response. The anatomical and functional
characterization of circuits that, when stimulated, reduce ob-
sessions and compulsions could improve the risk-benefit
profile of DBS and provide testable hypotheses for neuro-
modulation of OCD in general.

Remarkably, different DBS targets have shown comparable
response rates in OCD (5,6). Previous work demonstrating that
DBS exerts clinical effects beyond the local/focal stimulation
target (7,8) has motivated the concept of a broader, potentially
shared neural network responsible for improvement of ob-
sessions and compulsions. In parallel, OCD is a heterogeneous
disorder, with evidence suggesting that a varying set of mul-
tiple networks may be affected in each patient, and thus
relevant for neuromodulatory treatment (9). Connectomic DBS
is a rapidly developing neuroscientific concept that can help to
understand how different target regions contribute to clinical
improvement via linked networks. In this critical review, we aim
to scrutinize methodologies and findings from connectomic
studies and DBS interventions for OCD to identify common
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and diverse pathways likely to be effective for reducing ob-
sessions and compulsions. We focus on structural connectivity
for the sake of conciseness; relevant functional magnetic
resonance imaging (MRI) studies in OCD DBS (7,10–12) are
discussed where appropriate.
FROM FOCAL TARGETS TO INTERCONNECTED
NETWORKS

The idea of modulating a network (instead of a focal brain
region) with surgery is not new. Around 1950, Jean Talairach
and Lars Leksell independently began lesioning the anterior
limb of the internal capsule (ALIC), with the aim of disrupting a
network between limbic and prefrontal regions (13). In partic-
ular, patients with OCD improved after ablations of the ALIC
(capsulotomy) or the anterior cingulum (cingulotomy) (14,15).
Following this work, the first target used for DBS in OCD was
the ventral ALIC (16,17). In the following years, different nuclei
adjacent to the ALIC, including the ventral striatum (VS) con-
taining the nucleus accumbens (NAc) as well as the bed nu-
cleus of the stria terminalis (BNST), have been proposed as key
regions for successful DBS (18,19). Through empirical evi-
dence from DBS in movement disorders, other brain targets
such as the subthalamic nucleus (STN), the inferior thalamic
ticle under the
-nd/4.0/).
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peduncle, and the superolateral branch of the medial forebrain
bundle (MFB) [later referred to as ventral tegmental area (VTA)
projection pathway (20) or midbrain target (21)] have been
successfully targeted in OCD (3,22,23). Remarkably, modula-
tion of these distinct subcortical targets (Figure 1) all show the
potential to improve obsessions and compulsions, pointing
toward a common network responsible for clinical efficacy.
Using modern MRI technology such as diffusion-weighted
imaging based tractography (diffusion MRI [dMRI]), we are
now poised to create realistic in silico models of how these
different sites of intervention may form nodes that assemble a
common network (Figure 2). Specifically, by mapping clinical
effects onto modulated neural pathways, researchers have
begun to identify connectivity profiles associated with clinical
efficacy (24). Undeniably, classic analysis of optimal spots can
further complement such network analysis to characterize or
validate specific hubs (i.e., for surgical targeting) within a given
network. Box S1 outlines different methodological approaches
that have been used in OCD DBS so far (see Supplement for a
more detailed discussion).

CONNECTOMIC STUDIES OF DBS FOR OCD

In a first connectomic approach toward DBS for OCD, Hart-
mann et al. (25) investigated 6 patients who underwent ALIC/
NAc-DBS employing tract activation modeling using a
normative dMRI brain atlas (Approach A in Box S1). In 2
Figure 1. Different surgical deep brain stimulation concepts for
obsessive-compulsive disorder and surrounding structures. Tracts
traversing the anterior limb of the internal capsule (ALIC) (anterior thalamic
radiation [ATR]; limbic/associative hyperdirect pathway [li. HDP]) have been
added schematically. Structures that have been targeted by deep brain
stimulation are outlined in orange. Please note that the aim of the figure is to
outline surgical concepts that have been proposed in the literature. As
discussed in this review, some are built on conflicting theories and thus may
not be necessarily anatomically/mechanistically plausible. Left panels show
inset relative to the whole brain for orientation on the T1 Montreal Neuro-
logical Institute 2009b (8) and BigBrain (9) templates. BNST, bed nucleus of
the stria terminalis; ITP, inferior thalamic peduncle; NAc, nucleus accum-
bens; RN, red nucleus; VC/VS, ventral capsule/ventral striatum; VTApp,
ventral tegmental area projection pathway (formerly superolateral branch of
the medial forebrain bundle); STN, subthalamic nucleus.
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responding patients, stimulation particularly affected fibers
reaching the right anterior middle frontal gyrus/dorsolateral
prefrontal cortex (dlPFC), while nonresponders stimulated the
lateral orbitofrontal cortex (OFC). The authors concluded that
targeting right dlPFC fibers leads to optimal response, while
negative outcomes resulted from widespread activation of
nontherapeutically relevant fibers. While the latter conclusion
(i.e., negative outcome associated with widespread activation)
was not directly replicated in further studies discussed below,
the study also suggested that modulation of a more centrally
rather than ventrally located white matter pathway within the
ALIC was associated with optimal treatment response (25).

Liebrand et al. (26) investigated 12 patients with ALIC/NAc-
DBS using individual preoperative dMRI and calculated the
distance of active electrode contacts to specific fibertracts, the
anterior thalamic radiation, and the superolateral branch of
the MFB (Approach B in Box S1). Both fiber bundles were
reconstructed using probabilistic tractography with the anterior
thalamic nucleus or the VTA as seed regions, respectively, and
the ventral ALIC as waypoint based on previous studies (27).
The authors observed a significant positive correlation be-
tween clinical improvements and the proximity ratio in favor of
the MFB compared with the anterior thalamic radiation. We
note that the nomenclature and conceptualization of this fiber
tract identified as MFB has since evolved (21) and that the
original authors now refer to this structure as VTA projection
pathway (20), while others referred to it as a midbrain projec-
tion (21) (see below for a detailed discussion).

Using a different methodological approach (Approach C1 in
Box S1), Baldermann et al. investigated a cohort of 22 subjects
who underwent ALIC/NAc-DBS (28). Optimal voxelwise
structural connectivity profiles were calculated based on indi-
vidual dMRI data in one group and based on normative dMRI
data in another. The resulting maps constituted models of
optimal connectivity capable to explain significant amounts of
variance in outcomes in patients of the other subsample,
indirectly highlighting the utility of both individual and norma-
tive dMRI for connectomic DBS. A final model of optimal
connectivity using the normative connectome data across the
whole group revealed that connectivity between stimulation
sites and both lateral and medial prefrontal cortices could be
cross-validated with significant correlations in a leave-one-
patient-out design. Finally, a fiber-centric analysis (Approach
C2 in Box S1) was introduced to further determine the
subcortical representations of this beneficial connectivity pro-
file. This analysis revealed a fiber bundle that connected the
lateral and medial prefrontal cortex with the thalamus and STN,
which traversed the ALIC centrally.

Further developing this novel approach (C2)—which has
since been termed DBS fiber filtering or discriminative
tractography—Li et al. published the largest study (N = 50) to
date to determine connectivity associated with response to
DBS for OCD (29). First, the same sample employed in the
Baldermann et al. study (28) was included (ALIC/NAc target).
Second, a cohort of 14 subjects who received DBS of the STN
was added. Results were validated by calculating the tract
model on the first cohort and overlaying stimulation volumes of
the second cohort with it to generate coefficients termed fiber
T scores. High scores would suggest optimal clinical out-
comes, while low scores would suggest poor clinical
iatry November 15, 2021; 90:678–688 www.sobp.org/journal 679
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Figure 2. Effective neuromodulative treatments
for obsessive-compulsive disorder (OCD) with
schematic display of target regions. Existing target
regions may give additional clues about a common
pathway for treating OCD. Currently, the U.S. Food
and Drug Administration approves 2 interventions:
An H-coil transcranial magnetic stimulation (TMS)
system targets the dorsal anterior cingulate cortex
(dACC) and dorsomedial prefrontal cortex (dmPFC)
(50) and deep brain stimulation (DBS) of the anterior
limb of the internal capsule (ALIC) (17). Another
target for DBS, the anteriomedial subthalamic nu-
cleus (amSTN), showed efficacy in patients with
OCD in a randomized controlled clinical trial (3).
Meta-analysis of observational studies involving
capsulotomy (72–74) and cingulotomy (41) show ef-
ficacy in severe OCD as a last-resort treatment,
although controlled studies are lacking. MRgFUS,
magnetic resonance-guided focused ultrasound;
rTMS, repetitive TMS. All panels reproduced, with
permission, from original work. Panel rTMS repro-
duced from (75). Panel by Jung 2017 distributed
under the Creative Commons Attribution Non-
Commercial License (http://creativecommons.org/
licenses/by-nc/4.0).
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outcomes. The calculated scores significantly correlated with
clinical improvements in both directions, i.e., after calculating
the tract model on the first to explain variance in the second
cohort, and vice versa. Finally, two smaller samples from in-
dependent centers [N = 8 targeting the NAc and N = 6 tar-
geting the ALIC/NAc region and STN in a crossover trial (30)]
were used to validate results. By doing so, the hypothesized
pathway for OCD DBS was refined, showing again that
streamlines connecting the lateral and medial prefrontal cortex
with the anteromedial STN and medial dorsal nucleus of the
thalamus were associated with successful DBS. A more con-
servative analysis of the data using a tractography atlas of
basal ganglia pathways (31) (which is less prone to false posi-
tives) confirmed a fiber bundle connecting the dorsal anterior
cingulate cortex (dACC) with the STN via the ALIC as the
strongest candidate tract represented by the atlas. After
consultation with 4 anatomists, the tract was classified to
represent a central subsection of the ALIC that involves
hyperdirect input to the nonmotor STN.

The resulting tractographic profile (29) was made publicly
available as a reference for scientific use (Figure 3, top right).
An independent research group confirmed the predictive value
of the pathway in 10 subjects with OCD and DBS of the ALIC/
VS applying the same analysis procedure (32). A second group
recalculated an optimal tract using the same methodology on a
novel sample of 8 patients and identified the same bundle in
direct comparison to the published one (33). The significant
association between clinical improvement and the extent of
modulating this specific pathway was reproduced in both
studies (32,33).

Another recent report applied connectomics to study a
cohort of 9 patients with OCD undergoing DBS targeting the
BNST (1). In a voxel-by-voxel analysis, structural connectivity
to the right ventrolateral PFC (vlPFC) and hippocampal regions
and also to parietal and dorsomedial prefrontal areas
680 Biological Psychiatry November 15, 2021; 90:678–688 www.sobp.
significantly explained variance of response to DBS. A com-
plementary fiber filtering analysis revealed, among others,
white matter fibers within the ALIC that connected the stimu-
lation site to the midbrain, traversing the BNST onward to the
right vlPFC. This tract again graphically matched the pathway
identified by Li et al. (29) (with a slightly more ventral course
and overlap with the originally published tract) and correlated
positively with clinical outcomes to a similar degree—albeit not
significantly (Figure 3). Lastly, a recent investigation of 28 pa-
tients with Tourette syndrome treated with DBS of the anterior
globus pallidus internus showed that modulation of the
pathway published by Li et al. (29) was a significant predictor of
improvement in obsessive and compulsive symptoms in these
patients (34). This observation is remarkable because it sug-
gests that DBS for OCD might act via symptom-specific rather
than disease-specific networks. Specifically, it shows first ev-
idence that the same network modulation approach could be
effective transdiagnostically (a narrative that complies with the
longstanding idea to study brain functions instead of noso-
logical entities). Figure 3 summarizes the initial findings (28,29)
and confirmatory results (1,8,33,34).

It is important to note that some of the quoted studies also
highlighted additional relevant pathways, i.e., located directly
dorsally (32) or ventrally (1) to the tract published by Li et al.
(29) or connections between the amygdala and the BNST (1).
As the respective authors rightly stated (32), a putative network
associated with DBS response in OCD is likely not restricted to
the already identified pathway but rather involves further
connections yet to be uncovered, which is discussed in the
later section, Further Pathways and Factors Relevant for
Neuromodulation in OCD. Along with studies involving struc-
tural connectomics, there is also a growing body of literature
on changes in metabolic, functional, or electrophysiological
activity in the brain during DBS for OCD. An oxygen-15 posi-
tron emission tomography study by Dougherty et al. revealed
org/journal
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Figure 3. Summary of findings reported in Baldermann et al. (28) and Li et al. (29) (top) as well as off-site confirmations from additional studies (bottom).
Modulating red fibers was associated with optimal improvements, while modulating blue fibers associated with poor response along the Yale-Brown
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an acute perfusion increase within the dACC and basal ganglia
during ventral ALIC/NAc stimulation, which correlated with
improvement of affective symptoms (35), while Suetens et al.
reported a decreased metabolism with active DBS in the ACC
and inferior, middle, and frontal gyri (36). In this study, cap-
sulotomy for OCD resulted in an analog reduction in metabolic
activity in the ACC. Figee et al. reported a DBS-induced
reduction in hyperconnectivity with the ACC and lateral pre-
frontal cortex seeding from the NAc, which was associated
with greater reduction of obsessions and compulsions (7). A
later study performed a region of interest–based analysis of
directional functional connectivity, showing that active DBS
increased the impact of the ventromedial PFC (vmPFC) on an
amygdala-insula network along with improvements in
depression and anxiety symptoms (10). Moreover, there is a
number of electrophysiological studies showing that active
DBS of the ALIC/NAc interferes with low frequency oscillations
within the mPFC/ACC, which can be linked to improvements in
obsessions and compulsions (7,8,37) and cognitive perfor-
mance during conflicts (here, DBS increased theta power in
mPFC and vlPFC in patients with OCD and depression) (38).
The role of ACC-mediated cognitive performance during con-
flict in neuromodulation for OCD is further supported by data
from patients undergoing cingulotomy (39–41). Taken
together, these studies represent further evidence for the
involvement of a central pathway encompassing the ACC and
vlPFC in DBS for OCD beyond structural connectomics. Still,
they also show that further circuits, especially involving the
vmPFC, likely play a role in DBS for OCD. In summary, con-
nectomic studies for OCD DBS provide growing evidence that
a specific pathway within the ALIC carries out reductions in
obsessions and compulsions, which is in part supported by
studies using different modalities (functional MRI, positron
emission tomography, electrophysiology). As outlined below,
studies using different stimulation sites (ALIC, NAc, STN) are
for the most part congruent in that modulation of fibers from
the medial and lateral PFC, centrally traversing the ALIC and
connecting the STN and thalamus, accounts for positive out-
comes of OCD DBS.
ANATOMICAL CONSIDERATIONS

While some of the aforementioned studies agreed on the
critical role of the same fiber bundle published as a three-
dimensional dataset (1,28,29,32–34), others revealed
seeming heterogeneity about which pathway would be critical
to modulate for successful DBS in OCD. Namely, the study by
Liebrand et al. suggested that the MFB, connecting the PFC
with the VTA, would be associated with a beneficial response
=

Obsessive Compulsive Scale score in respective studies. While some studies app
in clinical outcomes it could explain in their sample (yellow box), others calculated
der Vlis et al. (33)] or did both [(Mosley et al. (1)]. Note that the study by John
obsessive-compulsive behavior (equally measured by the Yale-Brown Obsessive
from the studies by Baldermann et al. (28), Li et al. (29), and Mosley et al. (1), respec
ventrally. However, when overlaying their volumes of activated tissue with the
improvement (albeit not significantly). ALIC, anterior limb of the internal capsule;
terminalis; GPi, globus pallidus internus; NAc, nucleus accumbens; OCB, obsess
Smith et al. (32) reproduced, with permissions, from the original publication (othe
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(26), whereas other studies highlighted streamlines within the
ALIC as being critical for OCD DBS (28,32,42). Conventionally,
the MFB is a transhypothalamic structure that does not tra-
verse the ALIC (20,21)—and seen in this light, the studies
would imply a conflicting finding. Reviewing the respective
literature more in depth, however, suggests that this apparent
discrepancy is in fact a matter of nomenclature. The fiber tract
defined by Liebrand et al. (26) labeled as MFB was recon-
structed using dMRI by placing a waypoint seed into the ALIC.
This resulted in a bundle that passed the ALIC considerably
dorsally to the NAc (Figure 4). The group was relying on former
work by Coenen et al., who conceptualized the tract based on
dMRI tractography (referred to as superolateral branch of the
MFB) as a potential target for treating depression (27,43).
However, anatomy textbooks of the human brain (44), histo-
logical atlases (45,46), and a recent anatomical review of brain
regions relevant for OCD DBS (21) confirm that the MFB is not
part of the internal capsule (Figure 4). Thus, the streamlines
referred to as superolateral MFB instead represent fibers of the
internal capsule. Of note, there is uncertainty whether the
functionally relevant connections are the ones from the VTA
projecting through the internal capsule to the PFC and/or
descending PFC-brainstem connections that send axon col-
laterals to regions such as the STN and VTA (21). Thus, a more
appropriate description of the pathway described by Liebrand
et al. (26) could indeed be a cortico-midbrain projection
traversing within the ALIC. These insights harmonize afore-
mentioned findings with reports of the superolateral MFB/
midbrain target/VTA projection pathway as an effective target
for OCD (23), which, by its shape, again represents the same
bundle (47).

Assembling all evidence, multiple studies from differing
research groups with differing patient samples and targets
converge on a highly similar effective stimulation site within the
ALIC (Figure 5)—although authors had used different patho-
physiological concepts to explain results (Figures 1 and 4).
Evidence from nonhuman primate tract tracing suggests that
this spot may best be described by the central portion of the
ALIC with projections from the dACC and vlPFC (21,48). The
hyperdirect pathway projecting from the dACC to STN was the
most predictive tract from a set of anatomically predefined
pathways in the N = 50 study by Li et al. (29). In a recent report,
the same patients studied by Li et al. were reexamined based
on functional connectivity, which has the advantage to include
indirect connections. Again, a common network attributed a
central role to the dACC (12). Further support for the dACC as
a strong cortical candidate region is provided by the efficacy of
anterior cingulotomies in treating OCD (Figure 2) (49).
Furthermore, a Food and Drug Administration–approved H-coil
lied the published dataset from the Li et al. study to test how much variance
a novel tract using the same method and graphically compared results [van

son et al. (34) investigated patients with Tourette syndrome and comorbid
Compulsive Scale score). The green box shows a direct overlap of results
tively. In direct synopsis, the tract calculated by Mosley et al. traversed more
tract calculated by Li et al., this was positively associated with clinical

amSTN, anteromedial subthalamic nucleus; BNST, bed nucleus of the stria
ive-compulsive behavior; VC/VS, ventral capsule/ventral striatum. Panel by
r panels show original content).
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Figure 4. Differences in anatomical nomenclature
have led to confusion in the deep brain stimulation
for obsessive-compulsive disorder literature. Top:
optimal tract targets mediating deep brain stimula-
tion treatment by Liebrand et al. (26) and Baldermann
et al. (28) are marked in blue. The former was termed
medial forebrain bundle, while the latter was termed
frontothalamic radiation/anterior limb of the internal
capsule (ALIC). Based on anatomical tracer data in
macaques (21), this site within the central ALIC best
conforms to projections from the dorsal anterior
cingulate cortex and ventrolateral prefrontal cortex
(right). Bottom: classical definition of the medial
forebrain bundle (cyan) in coronal sections from
three anatomical reference atlases (45,46,76)
compared with the ALIC (red). According to these
atlases, the medial forebrain bundle takes a trans-
hypothalamic route and is not part of the ALIC. Panel
by Liebrand et al. reproduced with permissions from
Liebrand et al. (26). Panel by Safadi et al. (48)
reproduced under the Creative Commons Attribution
4.0 International License. Panel from Ding et al. (45)
retrieved from https://www.brain-map.org.
Figure panel Mai & Paxinos reproduced, with
permission, from Mai and Paxinos (46). Figure panel
Mai et al. reproduced, with permission, from Mai
et al. (76).
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transcranial magnetic stimulation system targets the dACC
and medial prefrontal cortex (50). Other DBS studies have also
reported the importance of the vlPFC (1,29) and middle frontal
gyrus/dlPFC (25,28). As shown in Figure 5, white matter tracts
from the PFC/ACC travel through the ALIC in a topologically
organized manner. By nature, dMRI-based tractography may
not be able to distinguish these cortical representations with
certainty. Subcortically, the connectomic evidence so far
highlights the pivotal role of the anteromedial STN and the
thalamus (29).
A MECHANISTIC MODEL OF CONNECTOMIC
NEUROMODULATION FOR OCD

Based on the evidence of connectomic DBS for OCD reviewed
above, we propose a novel network model for an underlying
mechanism of neuromodulation for OCD. Data indicate a
central role for the dACC and that modulation of a hyperdirect
connection of medial and lateral prefrontal cortices to the STN
is associated with DBS response. Thus, the STN as an entry
point for cortical information in terms of a hyperdirect pathway
appears to be relevant for treatment of OCD, apart from the
commonly accepted dysfunctional frontostriatal input related
to the direct and indirect pathway (51,52). Secondly, pro-
jections between the anterior thalamus and PFC seem
important (Figure 6). Considering the topological configuration
of white matter tracts in the ALIC, the pathway can be
described as a central ALIC pathway. Precise origination and
termination points of this pathway remain unclear. However,
some clues exist. As outlined, the dACC is a strong candidate
derived from tractographic studies and is in line with alternative
effective neuromodulation strategies for OCD, i.e., cingulotomy
and transcranial magnetic stimulation, but methodological
Biological Psych
limitations prevent a definite conclusion regarding other
cortical areas (i.e., vlPFC, dlPFC, and vmPFC) that may be
involved (Table 1).

Crucially, modulation of this circuit could take place at
different nodes of the network: first, via DBS to the ALIC,
STN, thalamus, and, potentially, globus pallidus internus;
second, via ablative neurosurgery to dACC and ALIC; and
third, via transcranial magnetic stimulation of the dACC.
Importantly, the different targets within this loop are not
necessarily interchangeable. Indeed, the fact that different
targets are equally capable of modulating this specific
network makes it even more important to understand what
surmounting differences exist between them. For instance, a
clinical trial including both the ALIC/NAc and STN targets in
the same patients revealed different structural connectivity of
these targets, although clinical improvement of obsessive-
compulsive symptoms of both targets could be assigned
to the same pathway (30). This suggests that each target
additionally modulated different brain networks and,
possibly, functions. Indeed, the authors distinguished that
while ALIC/NAc-DBS had a greater effect on comorbid
depression, STN DBS was associated with improved
cognitive flexibility.

Finally, the concept of a common network for improving
OCD symptoms may be independent of the disorder. As out-
lined, comorbid obsessions and compulsions in patients with
Tourette syndrome improved when the central ALIC pathway
was stimulated (34) (Figure 3). Thus, the proposed network
may be effective in improving obsessions and compulsions,
rather than OCD (as a categorical disease). Importantly, OCD is
a highly heterogeneous disorder. Apart from specific OCD
subtypes, e.g., washing, checking, and so on, the putative
underlying neuropsychological mechanisms are also
iatry November 15, 2021; 90:678–688 www.sobp.org/journal 683
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Figure 5. Synopsis of anatomical organization of
the anterior limb of the internal capsule with trac-
tography results of obsessive-compulsive disorder
deep brain stimulation studies. (A) Anatomical or-
ganization of the anterior limb of the internal capsule
as reported by Haber et al. (21). A central part of the
anterior limb of the internal capsule has been used
by most if not all studies investigating the matter (see
list). Note that the N = 22 patients from Baldermann
et al. (28) were used in Li et al. (29) as well and hence
were only counted once when calculating the sum of
119 patients across studies. Note that the cohort
reported by Johnson et al. (34) comprised patients
with Tourette syndrome with comorbid obsessive-
compulsive symptoms. (B) Synopsis of studies
from Baldermann et al., Li et al., van der Vlis et al.
(33), and Mosley et al. (1) that converge on a similar
region. The same data as in Figure 3 are shown in a
coronal cross section at y = 8 mm overlaid on top of
the ICBM2009b nonlinear asymmetric Montreal
Neurological Institute template. Tracts were con-

verted from streamlines to volumetric (tract-density) form using Lead-DBS and visualized using MRIcroGL (NITRC; University of Massachusetts Medical
School, Worcester, MA) software. ACC, anterior cingulate cortex; dlPFC, dorsolateral PFC; dmPFC, dorsomedial PFC; Gpe, globus pallidus externus; GPi,
globus pallidus internus; OFC, orbitofrontal cortex; PFC, prefrontal cortex; SN, substantia nigra; STN, subthalamic nucleus; Thal, thalamus; vACC, ventral ACC;
vlPFC, ventrolateral PFC; VP, ventral pallidum. Figure adapted, with permission, from Haber et al. (21).
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widespread, e.g., impaired habit versus goal-directed
behavior, cognitive inflexibility, emotional vulnerability, or
altered risk evaluation. These underpinning principles may in
turn serve as transdiagnostic dimensions for other
compulsivity-related disorders, such as behavioral addiction,
substance use disorders, Tourette syndrome, and autism-
related stereotypies (51,53). Thus, a next step toward a more
effective and personalized neuromodulation for OCD will be to
characterize these endophenotypes and identify through which
networks each may be effectively modulated (9).

This framework adds important insights to the prevailing
network models for OCD. Based on ground-breaking animal
studies that proved the critical role of the OFC for compulsive
symptoms (54,55), researchers have often focused on the role
of orbitofronto-striatal dysfunctions to explain clinical effects
of DBS (56). To date, we understand OCD as a multiple circuit
disorder in which each pathway contributes to different
the thalamus (inter alia the medial dorsal nucleus, medial dorsal [MD]) to the P
Additional loops that may contribute to beneficial effects of deep brain stimulatio
medial PFC (vmPFC) and orbitofrontal cortex (OFC), connecting with the ventral
somedial PFC (dmPFC). GPi, globus pallidus internus.

684 Biological Psychiatry November 15, 2021; 90:678–688 www.sobp.
aspects of the disease (9,52,57). In line with this notion, con-
nectomic studies for OCD DBS provide evidence that modu-
lating specific circuits relevant in OCD pathophysiology (i.e., a
central ACC-ALIC-STN pathway and possibly a vmPFC-
related pathway) can lead to clinical improvement. Further-
more, our review highlights the potential role of the STN in
OCD therapy as an entry point for cortical information from the
PFC in terms of a hyperdirect pathway.
FURTHER PATHWAYS AND FACTORS RELEVANT
FOR NEUROMODULATION IN OCD

We must reiterate that this proposed mechanistic model
forms one possible mechanism of action—and could repre-
sent part of a larger network. Modulation of additional loops
(e.g., ventral and dorsal frontostriatal loops, fronto-midbrain
connections) and respective changes in symptom
Figure 6. A proposed mechanism of action for
connectomic neuromodulation in obsessive-
compulsive disorder. Displayed are areas implicated
in the pathophysiology of obsessive-compulsive
disorder (upper right) and their representation within
the anterior limb of the internal capsule (ALIC) (bot-
tom left). The right panel schematically illustrates
connections with the basal ganglia. Solid arrows
represent evidence from connectomic studies so far:
effective deep brain stimulation is associated with
fibers from the medial (dorsal anterior cingulate cor-
tex [dACC]) and ventrolateral prefrontal cortex
(vlPFC) that traverse the ALIC centrally. Subcortically,
these fibers connect with the anteromedial sub-
thalamic nucleus (amSTN), representing a hyper-
direct pathway. In addition, modulating fibers from

FC along the ALIC (not illustrated) seem to contribute to clinical outcome.
n for obsessive-compulsive disorder include a ventral loop from the ventro-
striatum and a dorsal loop involving the dorsolateral PFC (dlPFC) and dor-
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Table 1. Structural Connectomic Studies of DBS for Obsessive-Compulsive Symptoms

Study N Indication Target
Connectivity
Estimate Methodology

Beneficial Connectivity

Cortical
Representation

Subcortical
Representation

Pathway
Specification

Hartmann et al. (25) 6 OCD ALIC/NAc Normative structural
connectivity

Pathway-activation
models

Right MFG/dlPFC ALIC

Baldermann
et al. (28)

22 OCD ALIC/NAc Individual and
normative structural
connectivity

DBS network
modeling, Fiber
filtering

Medial and lateral
PFC

Thalamus, nucleus
subthalamicus,
BNST

FTR/ALIC

Liebrand et al. (26) 12 OCD ALIC/NAc Individual structural
connectivity

Spatial pathway
dependency

PFC Ventral tegmental
area

VTApp/Midbrain
pp

Li et al. (29) 50 OCD ALIC/NAc,
STN

Normative structural
connectivity

Fiber filtering dACC, vlPFC amSTN, MD ALIC

Mosley et al. (1) 9 OCD BNST Normative structural
connectivity

DBS network
modeling, Fiber
filtering

Right vlPFC BNST, amygdala,
circuit of Papez

ALIC

Smith et al. (32) 10 OCD ALIC/NAc Normative structural
connectivity

Fiber filtering Validation of the pathway identified in Li et al. (29)

Johnson et al. (34) 28 GTS GPi Normative structural
connectivity

Pathway-activation
models

Associative/sensorimotor pallido-subthalamic pathway and
internal capsule

Validation of the pathway identified in Li et al. (29)

Van der Vlis
et al. (33)

8 OCD VC/VS Normative structural
connectivity

Fiber filtering Medial and lateral
PFC

STN ALIC

Validation of the pathway identified in Li et al. (29)

ALIC, anterior limb of the internal capsule; amSTN, anteromedial STN; BNST, bed nucleus of the stria terminalis; dACC, dorsal anterior cingulate
cortex; DBS, deep brain stimulation; dlPFC, dorsolateral PFC; FTR, frontothalamic radiation; GPi, globus pallidus internus; GTS, Gilles de la Tourette
syndrome; MD, medial dorsal; MFG, middle frontal gyrus; NAc, nucleus accumbens; OCD, obsessive-compulsive disorder; PFC, prefrontal cortex;
STN, subthalamic nucleus; VC/VS, ventral capsule/ventral striatum; vlPFC, ventrolateral PFC; VTApp, ventral tegmental area projection pathway.
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dimensions will further contribute to specific therapeutic out-
comes (9). This is reflected by the fact that although a com-
mon pathway could be derived from connectomic studies in
OCD DBS, there are evidently subjects in whom this pathway
was not modulated but who still profited from DBS (29,32,34),
implying that additional circuits will be relevant to consider. As
an example (Figure S1), DBS for OCD is capable of changing
affective states (i.e., anxiety, mood) that are accompanied by
altered activity in a network comprising the vmPFC, insula,
and amygdala (10). This is in line with changes in depression
scores linked to modulation of a more ventrally located loop
within the ALIC (which crucially does not involve the STN) (28).
Congruent to this, it was recently shown that transcranial
alternating-current stimulation of the OFC improved
obsessive-compulsive behavior in a cohort of healthy subjects
by interfering with reward-related beta-gamma oscillations
(58). Given that antidepressant effects of DBS are likely to
result from modulation of frontostriatal fibers (28), the fron-
tostriatal input may also play a decisive role for improving
affective states in OCD. The importance of this circuit for OCD
DBS is also supported by animal studies showing that opto-
genetic stimulation of the OFC-VS pathway decreases
grooming in a rodent model of OCD (55). A later study in the
same OCD mouse model revealed that both DBS of the VS
and ALIC resulted in a significant reduction in grooming
independently (although the ALIC target was more effective on
average), suggesting that both pathways are contributing to
therapeutic success (59). Further evidence supporting the
involvement of an affect-related circuitry stems from the
comprehensively discussed study by Mosley et al., where
connectivity with the amygdala was also associated with DBS
Biological Psych
response, along with modulation of the central ALIC (1). These
different therapeutic circuitries could correspond to improve-
ment of different symptoms or neuropsychological di-
mensions of OCD. Thus, we emphasize that in the same
manner as different basal ganglia cortical loops are implicated
in the pathophysiology of OCD (9), neuromodulation of
different circuits may contribute to therapeutic success.

Needless to say, other factors beyond targeting are likely to
influence the outcome of OCD DBS as well, but so far, reliable
response predictors are unknown. Larger volumes of the
striatum seem to be associated with better outcomes (60), and
a meta-analysis identified an association between age at OCD
onset and presence of sexual/religious obsessions with
beneficial outcomes (5), but effect sizes were small, and other
clinical trials found no differences between outcomes across
symptom dimensions (61). There is also uncertainty about
optimal stimulation parameters for OCD, as systematic
comparative studies hereof are lacking (62). Clinical trials of the
ALIC/NAc/BNST region typically use high amplitudes [e.g.,
ranging from 3 to 7 V (61), 3.5 to 5 V (2), or targeted at 4.5 V (1)],
while effective STN DBS required lower amplitudes [e.g.,
ranging from 1 to 4 V (63)]. In all of these trials, a monopolar
high-frequency stimulation (.80 Hz) was applied, and the
pulse width was mostly selected above 60 msec, although
often considerably higher (up to 120–450 msec) for the ALIC/
NAc/BNST area (61,64). For the previously discussed studies
on connectomic DBS for OCD, no specific patient selection
and similar stimulation parameters were chosen
(1,30,32,33,61). Higher activation thresholds of fibers of pas-
sage (e.g., in the ALIC) over axons terminating in a nucleus
(e.g., in the STN) may have led to differences in stimulation
iatry November 15, 2021; 90:678–688 www.sobp.org/journal 685
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amplitudes and pulse widths (65). Furthermore, on average and
across centers, ALIC stimulation volume centers were more
distant to the central ALIC target than in the STN groups—
which could again explain lower stimulation amplitudes
applied in the STN target.

LIMITATIONS AND METHODOLOGICAL
CONSIDERATIONS

Connectomic DBS for OCD is a novel and emerging field that
comes with relevant limitations. Primarily, the most studies
relied on small cohorts (inherent to psychiatric DBS), which
comes with a greater risk of false positive findings. Second,
connectomic studies for DBS strongly depend on the validity
of the modeled white matter pathways and how activation
hereof is determined, which is again subject to relevant limi-
tations. In case of OCD, many studies relied on a similar whole-
brain normative connectome and fiber filtering approach based
on isotropic electric field models (1,28,32–34). More complex
biophysical field modeling methods have been developed that
may lead to more detailed insights and superior results when
predicting clinical effects, in the future (65–67). For a discus-
sion on potential limitations of activation volume tractography
(as performed in most OCD DBS studies, so far) versus
tractography/pathway-activation models [as performed for
instance in the study by Hartman et al. (25)], we refer to the
excellent publication by Gunalan et al. (68). Third, until now,
there is no prospective validation of the identified pathways in
OCD DBS. Critically, prospective tractography-based DBS can
result in substantial differences across centers, putatively
because of differences in tractographic analysis (69). Despite
these limitations, the field of connectomic DBS for OCD has
made tremendous progress in the past years, and the current
evidence stems from multiple centers using different targets
and has been partly cross-validated using different connec-
tivity estimates (e.g., dMRI and histology-based atlases). To
face the obstacle of connectomic DBS for OCD, we call for
future studies that 1) pool data from different centers for larger
sample sizes, 2) focus on adequately assessed individual
symptom/neuropsychological dimensions of OCD, 3) employ
and ideally compare different approaches of DBS connectivity
models, and 4) combine different neuromodulatory ap-
proaches for OCD. Finally, following the pioneering example of
connectomic DBS for depression (70,71), prospective studies
are now necessary to validate observations in DBS for OCD to
make a step toward a more tailored, precise, and thus safe and
effective neuromodulation for OCD.

CONCLUSIONS

In summary, we review evidence for a unified network span-
ning between cortical (the dACC, vlPFC, and assumingly
others) and subcortical (anteromedial STN, medial dorsal nu-
cleus of the thalamus) regions that—when modulated by
means of DBS, ablative surgery, or noninvasive
neuromodulation—alleviates obsessive-compulsive symp-
toms. We conclude that despite different uses of nomencla-
ture, there is a high concordance between studies—especially
regarding a specific surgical target site within the ALIC. Finally,
we provide a mechanistic model with the most salient addition
to include a limbic/associative hyperdirect pathway that
686 Biological Psychiatry November 15, 2021; 90:678–688 www.sobp.
traverses within the central segment of the ALIC as a critical
component for clinical efficacy.
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